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Developmental dyscalculia is a significant neural deficit with broad social impact. A number of
techniques have been used to identify the brain basis of dyscalculia, and many of these have highlighted
the role of the intraparietal sulci and a left fronto-parietal network in the representation of core number
skills. These studies offer conflicting explanations of the neurobiological deficits associated with
dyscalculia, and to date few studies have elucidated the timeline of cortical changes involved.

Here we report a volumetric study comparing well-characterized dyscalculic learners aged from 8 to
14 years with tightly matched controls. Using automated cortical parcellation of anatomical MRI, we
show that the posterior parietal and fronto-parietal systems in dyscalculia may undergo abnormal
development during the pre-teenage and teenage years. As a result, the present study more clearly
characterizes the underlying neural basis of dyscalculia than previous studies have hitherto achieved.

& 2013 Published by Elsevier GmbH.
1. Introduction

Developmental dyscalculia (DD) is a congenital disability in
learning about numbers and arithmetic. A recent review of preva-
lence studies across many countries suggests that it affects between
3% and 6% of the population [1], a prevalence comparable with
dyslexia [2]. Like dyslexia, DD is a serious handicap for individual
sufferers, affecting their employment and health [3,4], and therefore
constitutes a significant burden on national economies [5,6].

The core deficit in DD is now generally agreed to be a disability in
processing numerosities – the number of objects in a set [7,8] ([9] for
slightly different methodology). It is possible to identify this deficit in
kindergarten simply by the speed and accuracy of naming the
number of dots in a visual array (up to nine dots). Moreover, a
longitudinal study using this method, was able to predict age-
appropriate arithmetical attainment up to the age of 11 years [10].

Just as specialized teaching is required for dyslexics that focuses
on their core deficit in phonology [11], it is now recognized that DDs
also need specialized teaching that focuses on their core deficit in
numerosity processing and which the teaching schedule carefully
adapts to the learner's current level of competence [7,12,13].
lsevier GmbH.
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Several studies have shown that learners identified as DD have
abnormalities in brain regions known to be critical for number
processing [14–16]. Many of these highlight the intraparietal sulci,
either unilaterally or bilaterally, as well as a larger fronto-parietal
arithmetic network, typically in the left hemisphere (see [17] for a
recent review).

Despite this progress in describing the dyscalculic brain, the
current body of literature fails to distinguish brain changes
occurring over time from brain changes occurring over space. It
is now quite clear that cortical grey and white matter development
varies both temporally and regionally during childhood and the
early teenage years [18], and this changing cortical landscape
presents a unique problem to the study of cognitive development
in children: baseline regional changes will vary by group (DD vs.
controls) and by age. Such regional shifts in developmental
trajectories may reflect longer-term influences on cortical matura-
tion than are typically examined in functional activation studies.

A morphometric analysis of such shifting trajectories requires
careful phenotypic characterization of DD learners. While a variety
of criteria for classifying learners as DD can be found in the
literature [19], the first study comparing brain structure in DDs
and matched controls, performed by our group, used a discrepancy
between measured and predicted performance on the Numerical
Operations subtest of the WOND [20]. The subjects in this study
were drawn from a population of low-birthweight adolescents
who had normal or superior IQs when tested [21]. The study found
reduced grey-matter density in the left intraparietal sulcus (IPS).
However, one study of 9 year olds, using an unspecified clinical
s of grey and white matter in dyscalculia. Trends in Neuroscience
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diagnosis, found reduced grey-matter density in the right IPS [22].
Another study of 7–9 year olds, identified as DD if they scored at or
below 95 on one of two subscales of the WIAT-II (Numerical Opera-
tions Score or Math Composite Score), found reduced grey matter
bilaterally in superior parietal lobule, intra-parietal sulcus, as well as
the fusiform gyrus, parahippocampal gyrus and the right anterior
temporal cortex in children with DD as compared with controls [23].

Another potentially useful way of identifying grey matter
regions that may be implicated in DD is to consider those areas
that are active in the development of arithmetical abilities. An
recent meta-analysis [24] suggests that the network active in
arithmetical development comprised: bilaterally the inferior and
superior parietal cortex (BA40), including the precuneus (BA7) the
inferior frontal gyrus (BA9), premotor cortex (BA6), the insula
(BA47, BA13); also, the right angular gyrus (BA39), and the left
inferior temporal gyrus (BA20), along with striate and extrastriate
cortex bilaterally (BA18, BA19). (p776-777)

This meta-analysis also confirmed that DDs showed lower activa-
tions in left precuneus (BA 7), right inferior parietal lobe (BA 40), left
frontal paracentral lobe (BA 6), left fusiform gyrus (BA 37), left
superior frontal gyrus (BA 10) and right middle frontal gyrus (BA 9).

In addition to grey matter (GM) differences, more recent
work has also reported differences in white matter (WM) [23].
White matter differences may be even more critical in the
description of dyscalculia, since white matter changes are known
to be associated with learning. For example, structural changes in
white matter are correlated with learning a motor skill in both
humans [25] and monkeys [26], and in learning to read [27] (see
[28] for a recent review). Furthermore, voxel-based morphometric
techniques have been used to demonstrate reduced white matter
(WM) volume in right temporo-parietal cortex of DD learners,
while diffusion-tensor imaging revealed reduced fractional aniso-
tropy (FA) in this WM region. This reduction in white matter
integrity in DD learners correlated in turn with their performance
on a standardized test of simple arithmetic [23].

In order to describe the brain basis of dyscalculia with validity,
both the morphometric and functional aspects of the dyscalculic
brain must be characterized by age. The present study examines
regional variation in cortical grey and white matter morphology in
dyscalculics and carefully matched controls over a range of ages
between 8 and 14 years. See Table 1.

The aim of this study was to describe in detail the differences in
regional cortical anatomy that characterize the dyscalculic brain,
and to establish how those regional differences might vary during
cortical development. We used, Freesurfer, a method of automatic
parcellation of brain regions that provides measures of the area,
thickness and volume of GM and the volume of WM [29–32].

We argue that both temporal and regional changes in cortical
surface parameters might account for the phenotype of develop-
mental dyscalculia.
2. Results

Using data processed using Freesurfer 5.1.0, we were able to
compare grey-matter (GM) volume, area and thickness, and white-
matter (WM) volume between the DDs and matched controls.
Table 1
DD and Control Demographics.

N Age at test (years) Gestatio

Dyscalculics 11 8–14 36.4 we
Matched controls 11 8–14 36.5 we

DDs were paired with controls matched for chronological age, gestational age, Full Scale I
were no group differences (all p-values40.05). SDs given in parentheses.

Please cite this article as: Ranpura A, et al. Developmental trajectorie
and Education (2013), http://dx.doi.org/10.1016/j.tine.2013.06.007i
2.1. Main effects

2.1.1. Grey-matter
There was a main effect of group on a number of cortical

structures; these are illustrated graphically in Fig. 1 and summarized
in Table 2. The largest group differences in cortical surface area were
seen in the bilateral subcentral gyri (BA43); dyscalculics had sig-
nificantly reduced cortical surface area in these regions compared to
matched controls. Cortical thickness was also reduced in the dyscal-
culic group, most prominently in the left temporal (BA22) and right
inferior frontal lobes (BA44). Finally, dyscalculics had large reductions
in grey matter volume in the right parahippocampal gyrus (BA36)
and the right inferior and posterior parietal lobe (BA39, BA40).
2.1.2. White matter
In addition to these grey matter deficits, dyscalculics had

reduced white matter volume in the right inferior parietal lobe,
the right temporal pole and transverse temporal lobe, and the
right pars orbitalis. See Table 3.
2.2. Age effects

To describe the effect of age on cortical morphology, we
performed a regional ANCOVA in dyscalculics and matched controls.
2.2.1. Grey matter
We found significant age-related increases in GM area in left

frontal cortex in controls only, depicted anatomically in Fig. 2, the
trends are depicted graphically in Fig. 4; see also Table 3. The
largest effect on cortical surface area was in the left supramarginal
gyrus (BA40), where dyscalculics gained area more slowly over the
age range than controls. Relative to controls, grey matter volume
in dyscalculics increased as they grew older in the left lateral
frontal cortex (dorso-lateral prefrontal cortex, essentially BA 46)
and the right superior occipital lobe (BA19), but decreased slightly
in the left primary motor cortex. Cortical thickness was minimally
decreased around the right cingulate cortex.
2.3. White matter

Dyscalculics had notable delays in white matter development
relative to controls, with changes seen broadly in the left frontal
and parietal cortices, with additional effects seen in right superior
and medial frontal cortex. These effects were typically character-
ized by an age-related increase in WM in the control subjects,
while in DDs WM volume remained stable or even decreased.
Significant differences were observed in the left precuneus, left
supramarginal gyrus, and bilaterally in the superior frontal lobes.
These results are depicted anatomically in Fig. 3 and the trends are
depicted graphically in Fig. 5, and tabulated in Table 4.

By contrast, in the posterior corpus callosum there was a
decrease in volume in controls, compared to a relatively un-
changed volume over time in DDs (see Fig. 5)(Table 5).
nal age FSIQ VIQ WOND NOp

eks (15 days) 111 (16) 110 (16) 91 (18)
eks (15 days) 111 (16) 114 (14) 113 (14)

Q, and Verbal IQ. Independent t-tests of each of these variables confirmed that there
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Table 2
Regional Grey-matter differences.

Region DD Controls t r

A. Area
L subcentral gyrus 2309.73 (80.04) 1850.3 (79.13) �4.08 0.68
R subcentral gyrus 1876.45 (92.76) 1606.9 (56.28) �2.48 0.53
R middle occipital 2993.82 (213.25) 3689.6 (195.17) 2.41 0.48
R lateral fusiform 2086.82 (124.92) 2646.8 (148.65) 2.88 0.56
R frontal middle sulcus 3387.64 (174.97) 2865.1 (145.27) �2.30 0.47
R fusiform 5516.45 (271.89) 6420.2 (304.55) 2.21 0.46
R temporal pole 640 (49.46) 814.2 (53.4) 2.39 0.48

B. Thickness
L superior temporal gyrus 2.97 (0.2) 3.51 (0.11) 2.37 0.52
L transverse temporal 2.96 (0.15) 3.43 (0.1) 2.58 0.53
R inferior frontal triangle 3.53 (0.08) 3.82 (0.1) 2.31 0.48

C. Volume
L subcentral gyrus 10,345.64 (472.95) 8459.7 (432.13) �2.94 0.56
L calcarine sulcus 7973.82 (405.59) 6799.1 (360.21) �2.17 0.45
L pars opercularis 13,241 (795.28) 15,840.9 (773.55) 2.34 0.47
R middle occipital 14,462.36 (1499.04) 18,573.5 (1139.45) 2.18 0.46
R lateral fusiform 9926.36 (820.74) 12,594.5 (477.13) 2.81 0.57
R medial parahippocampal 7899.18 (380.97) 10,576.1 (724.81) 3.27 0.66
R fusiform 20,547.18 (1558.04) 25,339.5 (1009.16) 2.58 0.53
R inferior parietal 39,388.45 (2434.15) 46,267.8 (941.48) 2.64 0.59

Automatically measured morphometric statistics were obtained and compared in groupwise t-tests between DD and controls. Each subtable gives the group mean values in
mm2 (area), mm (thickness) and mm3 (volume). Standard errors are in parentheses. The tabulated t-values are all significant at po0.05, and the effect sizes are measured
with r values. Using traditional categories, r¼0.1 represents a small effect, r¼0.3 is a medium effect, and r¼0.5 is a large effect.

Fig. 1. Regional grey matter differences. Automatically measured morphometric statistics were obtained and compared in groupwise t-tests between dyscalculics and
matched controls. Several regions were significantly different in terms of cortical surface area (red), thickness (blue), and volume (green). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Discussion

The present study is an analysis of three different cortical
parameters (thickness, area, and volume) across a range of ages.
Please cite this article as: Ranpura A, et al. Developmental trajectorie
and Education (2013), http://dx.doi.org/10.1016/j.tine.2013.06.007i
It is important, therefore, to consider the meaning of these three
parameters.

During foetal development, cortical neurons migrate along a
cellular scaffolding to form the six layers of neocortex [33]. Delays
s of grey and white matter in dyscalculia. Trends in Neuroscience
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or disruptions in this process of cortical layering might result in
abnormally thin cortex, with potentially few effects on cortical
surface area.

While cortical thickness is an index of developmental integrity
and lifetime health [34], from an evolutionary point of view,
surface area may be a better measure of functional capacity. The
rapid expansion of neocortex in higher primates is characterized
by an increase in surface area with relative preservation of cortical
thickness [35], suggesting that expansion of cortical area rather
than thickness is important for long-term species-level functional
change. Furthermore, both functional neuroimaging volumes and
the voxel based morphometry studies that have informed the
present work use anatomic measures more highly correlated with
cortical surface area than with cortical thickness, suggesting that
Fig. 2. Age trends in grey matter. Regional parcellation data were compared in an ANCO
group as independent predictors. Significant age� group interactions are depicted fo
references to colour in this figure legend, the reader is referred to the web version of t

Table 3
Regional white-matter differences.

Region DD Controls t r

R inferior parietal 22,968.64 26,389.00 2.45 0.49
(1046.09) (927.47)

R pars orbitalis 2163.18 2637.60 2.46 0.49
(131.8) (141.20)

R temporal pole 1186.91 1741.90 2.39 0.55
(102.12) (208.06)

R transverse temporal 1038.09 1517.60 2.91 0.59
(89.06) (138.80)

As before, automatically measured morphometric statistics were obtained and
compared in groupwise t-tests between DD and controls. For white matter parcels,
only volume (mm3) was calculated. Standard errors are in parentheses. The
tabulated t-values are all significant at po0.05, and the effect sizes are measured
with r values. Using traditional categories, r¼0.1 represents a small effect, r¼0.3 is
a medium effect, and r¼0.5 is a large effect.

Please cite this article as: Ranpura A, et al. Developmental trajectorie
and Education (2013), http://dx.doi.org/10.1016/j.tine.2013.06.007i
on an individual level too, surface area is a predictor of functional
status [36].

The third anatomic parameter we considered was volume.
Geometrically, volume is a reflection of both thickness and area,
but in our hands as in previous studies, volumetric measurements
tend to correlate more strongly with area (although volumetric
measurements also tend to have greater variability). We include
this parameter both to preserve direct comparisons with previous
work as well as to enable comparison of grey matter and white
matter regions; the latter of which cannot be meaningfully
parcelled with any measurement other than volume.

All three parameters shed light on the ontogeny and ongoing
development of cerebral cortex in our subjects. There is clear
evidence that cortical thickness and surface area are under inde-
pendent genetic control [36], and that cortical volume has some
independence from both of these. For the purposes of this study, and
from a theoretical perspective only, we argue that cortical thickness
is reflective of the perinatal and environmental factors affecting
brain development, that cortical surface area is reflective of regional
variations in functional capacity, and that cortical volume is a non-
linear combination of these two properties.

Given that background, the main effects of the present study
confirm previous findings of less GM in the parietal lobes of DDs
[21,22], the critical areas for the representation of numerical
magnitude [15,37–39]. Comparison (Table 6) with the regions
identified in the meta-analysis of activation studies [24] is laid
out in Table 4.

Our findings also extend previous studies in showing less GM
volume and thickness in DD brain areas associated with setting up
and monitoring ongoing tasks. It is perhaps not coincidental that
neurons in these areas demonstrate magnitude sensitivity in
monkeys [40]. We also found decreased GM volume in the right
parahippocampal gyrus and entorhinal cortices of DD subjects,
areas known to be associated with learning and memory (e.g.
[41,42] for reviews).
VA, with the morphometric statistics as the dependent variable and both age and
r GM area (red), thickness (blue), and volume (green). (For interpretation of the
his article.)

s of grey and white matter in dyscalculia. Trends in Neuroscience
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Fig. 4. Age trends in grey matter. Linear representations of the independent ANCOVAs d
matched controls (right graphs). All depicted age�group interactions are significant at

Fig. 3. Age trends in white matter. Regional WM parcellation data were compared in
an ANCOVA, with the morphometric statistics as the dependent variable and both age
and group as independent predictors. Significant age�group interactions are depicted.
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Of particular interest are the contrasting developmental trajec-
tories of WM in controls and DDs. It was clear that WM volumes
increased with age in the controls but not in DDs, most notably in
the left frontal lobe. The control results are consistent with
previous large-scale studies on brain development in the pre-
adolescent brain [18]. Typical neuro-development is characterized
by a modest decrease in GM volume simultaneous with an
increase in WM volume. To the extent that this morphological
change reflects both genetic development and experience-
dependent learning, the present results may reflect the neural
basis of DDs failure to learn.

Two developmental changes are particularly striking. First,
significant increases in WM in the frontal lobes in controls, but
not in DDs, suggests that the frontal lobes may be connecting
increasingly to parietal areas in the fronto-parietal network known
to be involved in arithmetic [16,43]. Second, and consistent with
this, are the increases of parietal WM in controls only, especially in
the angular gyrus and in the supramarginal gyrus, known to be
implicated in retrieval of arithmetical facts [44–48] and in the left
inferior parietal lobe, associated with representation of numeros-
ities and numerical magnitudes [15,37,49–52]. Given the stringent
Matched Controls

R middle anterior
cingulate gyrus 

R orbital sulcus
R pericallosal sulcus

L orbital sulcus
L precentral sulcus

inferior part, 

L precentral gyrus 
L rostral middle frontal 

gyrus
L supramarginal gyrus

L BA4p
L BA44

L orbital sulcus
L BA4p

R occipital superior
gyrus 

R lateral fissure

Age (years)

emonstrate the changes in GM morphology with age, in both DDs (left graphs) and
po0.05.
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Table 4
Age trends in grey matter.

Region DD Controls F ω2

A. Area
L orbital lateral sulcus 541.36 (48.82) 532.9 (67.56) 6.55 0.31
L precentral inferior 2301.82 (207.32) 2425.9 (155.26) 4.63 0.20
L precentral gyrus 10,676.36 (499.69) 10,180.5 (360.22) 4.35 0.19
L rostral middle frontal 13,018.36 (722.09) 12,503.4 (706.5) 5.70 0.26
L suparmarginal 7961.64 (338.1) 8040.8 (396.89) 6.51 0.31
L BA4p 180.36 (89.24) 1856.7 (106.46) 5.90 0.27
L BA44 3271.82 (180.37) 3558.1 (244.84) 5.47 0.25

B. Thickness
R mid-anterior cingulate 3.31 (0.06) 3.45 (0.09) 6.27 0.29
R orbital sulcus 3.14 (0.07) 3.21 (0.23) 4.44 0.19
R pericallosal sulcus 2.4 (0.07) 2.41 (0.1) 6.18 0.29

C. Volume
L lateral orbital sulcus 1600.36 (177.59) 1543.4 (187.94) 6.21 029
L BA4p 4705 (241.54) 4830.1 (274.39) 7.01 0.33
R superior occipital 8637.91 (810.66) 8206.4 (329.41) 5.41 0.25
R lateral fissure, anterior 967.82 (113.02) 1030.5 (86.52) 7.31 0.35

Regional parcellation data were compared in ANCOVAs, with the morphometric statistics as the dependent variable and both age and group as independent predictors. Each
subtable gives the group mean values in mm2 (area), mm (thickness) and mm3 (volume). Standard errors are in parentheses. The tabulated F-values are for age� group
interaction, and all significant at po0.05, and the effect sizes are measured with omega-squared values.

Table 5
Age trends in white matter.

Region DD Controls F ω2

Corpus callosum, mid-post. 670.18 (34.38) 697.1 (90.52) 4.64 0.20
L lateral occipital 18,818.73 (1202.96) 20,112.7 (1054.04) 4.58 0.20
Lmiddle temporal 12,820.27 (392.25) 12,619.4 (697.96) 6.11 0.28
L precuneus 19,837.36 (899.9) 19,288.6(813.55) 7.72 0.37
L rostral frontal 29,873 (1791.39) 29,760.3 (2373.29) 8.33 0.41
L superior frontal 37,979.36 (1969.82) 38,621.7 (1766.71) 4.92 0.22
L superior temporal 15,388 (892.55) 14,997.5 (779.16) 5.72 0.26
L supramarginal 17,115.36 (695.52) 18,029.9 (1001.83) 5.36 0.24
R fusiform 13,248.27 (672.55) 14,933.1 (724.54) 4.84 0.21
R lateral occipital 19,898 (1200.3) 20,387.7 (1757.38) 4.76 0.21
R superior frontal 3611.64 (1846.2) 37,100.4 (1897.36) 5.24 0.24

Regional parcellation data were compared in ANCOVAs, with the morphometric statistics as the dependent variable and both age and group as independent predictors. Each
subtable gives the group mean values in mm3 (volume). White matter volumes are projected on to the cortical surface using Freesurfer conventions. Standard errors are in
parentheses. The tabulated F-values are for age x group interaction, and all significant at po0.05, and the effect sizes are measured with omega-squared values.
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Table 6
Previous findings.

Region Kaufmann, 2011 This study

Left precuneus More activity in controls More WM gain over time in Controls
Right inferior parietal lobule More activity in controls More GM volume in controls
Left frontal paracentral lobe More activity in Controls More WM gain over time in controls
Left fusiform gyrus More activity in Controls No significant results
Left superior frontal gyrus More activity in controls More WM gain over time in controls
Right middle frontal gyrus More activity in controls No significant results
Left postcentral gyrus More activity in dyscalculics No significant results
Right inferior parietal lobule More activity in dyscalculics More GM volume in controls (see above)
Left superior frontal lobe More activity in dyscalculics More WM gain over time in controls (see above)
Left red nucleus More activity in dyscalculics Not analyzed
Right paracentral frontal lobe More activity in dyscalculics More WM gain over time in controls
Left inferior parietal lobe More activity in dyscalculics More GM area and WM gain over time in controls

Regions identified as structurally different in DDs in this study compared with those regions showing different activations in a meta-
analysis of functional MRI studies by Kaufmann et al. [24].
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definition of DD used in this study, the present results offer strong
evidence for a neural basis of core numerosity that is disrupted
during pre-adolescent cortical maturation.

The one exception to this trend was in a small posterior region
of the corpus callosum that connects the parts of the parietal lobes
implicated in number processing. One interpretation of these
results is that the age-dependent reduction in posterior callosal
fibres in controls reflects axonal pruning, and therefore an effect of
normal maturation. Conversely, the relatively stable volume of
posterior callosal fibres in DDs may be the manifestation of a
transhemispheric system with reduced plasticity.

In general, the present results replicate a well-established pattern
in control subjects: GM area and thickness tend to decline modestly
with age, andWM volume tends to increase; in DD subjects however,
the size of these effects is diminished or even reversed. These
morphological changes may represent a long-term effect of learning
and experience-dependent plasticity, though of course they may also
reflect genetically determined individual differences.

As an aside, neither non-numerical markers of general perfor-
mance (including performance IQ and processing speed) nor
markers of verbal performance (including verbal IQ and vocabu-
lary scores) exhibited regional or age specificity in regions of the
brain previously associated with numerical cognition. The lack of
significant results associated with these non-numerical tasks
illustrates that the whole brain regression method we have
employed here effectively tests task-relevant cortical anatomy.

The present study has several important limitations. First, this
is a very small sample, and DD learners may be atypical in ways
that were not observed here. The present results are suggestive of
an important conjunction of temporal and regional changes that
may characterize dyscalculia; it would be very useful to look at a
larger sample with more individuals at each age point and across
the ability spectrum to assess the typicality of DD brains apart
from the differences noted in this study.

Second, we selected dyscalculic subjects from our larger sample
using the WOND-NO criteria first described by Isaacs and colleagues
[21]. However, recent evidence supports the hypothesis that dyscal-
culics share a core number deficit that is only crudely captured by
untimed arithmetical tests, such as the WOND-Numerical Operations
subtest [8]. Nevertheless, in this sample we were able to validate the
WOND-NO classifier using individual core number tasks (timed dot
enumeration): for number tasks, DDs were significantly impaired
relative to control subjects. Furthermore we confirmed that non-
numerical measures of general performance (processing speed and
IQ) were not able to distinguish our dyscalculic sample from controls.
We conclude that at least for the straightforward delineation we
desired for this study, the WOND-NO was an effective and simple
tool for identifying dyscalculics.
Please cite this article as: Ranpura A, et al. Developmental trajectorie
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Finally, although we restricted our regional analysis to brain
areas previously associated with dyscalculia [24] our analysis was
not otherwise corrected for multiple comparisons. Although Type I
errors in significance testing may occur, here we are concerned
with patterns of network activation previously found to be
abnormal in DD based on previous fMRI studies, and as will be
seen from the tables, substantial effect sizes were observed. These
effect sizes are a good guide to the relative strength of the results,
and provide a better characterization of our findings than would
null hypothesis testing alone.

In addition to the well-characterized involvement of the left
IPS, functional studies of calculation have highlighted involvement
of the left and right IPS, the rostral frontal cortices, and the left
precuneus [18]. Our results are spatially consistent with previously
described anatomy, and the effect sizes we report further bolster
our conclusion that the present results are not spurious.

Overall, the present study gives a more comprehensive picture
of the differences between DD and typical brains than had
previously been available. Notably, the present results demon-
strate that DD is well-characterized by core number deficits, that
these deficits have a clear anatomical basis, and that regionally-
specific developmental trajectories in both GM and WM are
relevant to the development of arithmetical abilities.

Our results also raise questions about how best to help DDs
acquire the numeracy skills required for a numerate society. As the
brain changes with age, should teaching methods change as well?
4. Methods

4.1. Analysis

All statistical analyses were carried out in R, an open-source
statistical programming environment (R Development Core
Team, 2011).

4.2. Participants

Participants were recruited as a larger twin study of the genetic
and neural basis of mathematical development, supported by the
Multiple Births Foundation at Queen Charlotte's and Chelsea Hospital.
The aims of the study were made clear to parents via study
information sheets. The following exclusion criteria were applied:
Autistic Spectrum Disorders; severe chronic disease (e.g. cerebral
palsy); having received treatment at birth for acute twin-to-twin
transfusion; children unwell on the study day. Information on birth-
weight and gestational age were obtained from parents and source-
verified against notes for twins born at QCCH. All subjects took part
s of grey and white matter in dyscalculia. Trends in Neuroscience
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in a battery of cognitive tests, including IQ testing and numerical
assessment, as detailed below. Subjects in the present sample were
twins at birth, although no twin pairs were included.

We used two convergent approaches to identify DDs. First, we
used a discrepancy criterion such that DDs obtained significantly
lower scores on a standardized arithmetic test [20] than the scores
predicted by their full-scale IQ [53]. Twenty-one members of our
original sample of 269 children satisfied this criterion. The
dyscalculic subjects were then paired with controls from the
sample population, matching for length of gestation, age, and IQ.
To cross-validate our selection, we compared our subjects on core
numerosity measures. Dyscalculic subjects showed impaired per-
formance in timed estimation of the numerosity of dots (F(1,32)¼
6.4, po0.02) and on timed arithmetic tasks (F(1,34)¼8.9,
po0.01), but demonstrated normal performance in general pro-
cessing speed (F(1,39)¼3.09, p40.05) and vocabulary tests (F
(1,39)¼0.03, p40.05). These clear core number deficits validated
and confirmed the discrepancy classification of DD [21].

4.3. Cognitive testing

In addition, to assessment of WISC III Full-Scale IQ, specific tests
of numerical abilities were carried out to identify DDs using
standard criteria:
1.
P
a

WOND, specifically the Numerical Operations subtest was used
to categorize learners as dyscalculic if their score was signifi-
cantly different from Full Scale IQ, following the procedure of
Isaacs et al. [21].
2.
 Dot enumeration. Arrays of two and nine dots were generated
and presented on a computer display using a custom-designed
computer programme. Subjects were asked to enumerate these
displays and press the corresponding number key on a stan-
dard keyboard. Reaction times for correct trials, standardized
from an age-matched sample, constituted the metric for
comparing the two groups.

4.4. Imaging

4.4.1. Image acquisition
MRI studies were performed on a 1.5 T Siemens Vision system.

Investigations included magnetization-prepared rapid acquisition
gradient echo [54]; a three-dimensional volume acquisition with
repetition time of 10 ms; echo time, 4 ms; inversion time, 200 ms;
flip angle, 121; matrix size, 256�256; field of view, 250 mm;
partition thickness, 1.25 mm; 128 sagittal partitions in the third
dimension; and acquisition time, 8.3 min producing high resolu-
tion T1-weighted volumetric scans.

Of the 21 DD we identified, seven did not have brain scans, and
an additional three had invalid Freesurfer reconstructions. To keep
numbers balanced, both the DDs who were missing scans and
their normal counterparts were eliminated. The final Freesurfer
sample had 11 dyscalculics, and 11 controls (Table 1).

4.4.2. Post-acquisition imaging processing
4.4.2.1. Cortical parcellation. The surface-based analysis utilized
Freesurfer 5.1.0 and followed the procedures described by Fischl,
Dale and colleagues [29,30,32]. After initial preprocessing of the T1-
weighted images, surfaces corresponding to the white matter
boundary and pia mater were obtained automatically by the
software. The pial surface was segmented into 34 regions per
hemisphere using the Desikan-Killiany atlas [29] and cortical
thickness for each region was obtained as the mean distance
between the pial and white matter surfaces. The area of segmented
lease cite this article as: Ranpura A, et al. Developmental trajectorie
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surface and total grey matter volume were obtained similarly for
each region. This approach has the advantage of combining atlas-
based information with subject-specific morphology.

4.4.3. Statistical analysis
Parcellation data from Freesurfer was imported into R for further

analysis. Only regions consistent with prior activation studies were
analyzed. Broadly defined, these were regions in the bilateral inferior
parietal cortices, the superior and rostral frontal cortices, and the
bilateral precuneate cortices. Reported p-values are uncorrected for
multiple comparisons; given the possibility of Type I errors with a
survey approach like this, we have reported effect sizes for every
comparison. Main effects were examined with t-tests, and effect sizes
were calculated as Pearson's r values:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2

t2 þ df

s

Pearson's r was chosen over Cohen's d because of the general
utility and familiarity of the former, as well as the validity of both
metrics in describing effects sizes for means testing [55]. Effect
sizes were interpreted traditionally, with r¼0.1 representing a
small effect, r¼0.3 a medium effect, and r¼0.5 a large effect. Age
by group interactions were examined with ANCOVA, with age,
group, and their interaction as predictors. The reported effect size
is omega-squared.
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