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Abstract
It has been proposed that the development of verbal counting is supported by a more ancient

preverbal system of estimation, the most widely canvassed candidates being the accumulator

originally proposed by Gibbon and colleagues and the analogue magnitude system proposed

by Dehaene and colleagues. The aim of this chapter is to assess the strengths andweaknesses of

these models in terms of their capacity to emulate the statistical properties of verbal counting.

The emphasis is put on the emergence of exact representations, autoscaling, and commensu-

rability of noise characteristics. We also outline the modified architectures that may help

improve models’ power to meet these criteria. We propose that architectures considered in this

chapter can be used to generate predictions for experimental testing and provide an example

where we test the hypothesis whether the visual sense of number, ie, ability to discriminate

numerosity without counting, entails enumeration of objects.

Keywords
Preverbal system, Analogue magnitude system, Numerosity, Stochastic process, Poisson

distribution

1 THE PREVERBAL SYSTEM
Any consideration of the mathematical brain across the lifespan should start with the

moment of conception and the nature of the genotype that will build the brain. Does

the genotype encode for brain systems that are specific to mathematics? If it does,

what is the neural mechanism and what can it do?

Progress in Brain Research, Volume 227, ISSN 0079-6123, http://dx.doi.org/10.1016/bs.pbr.2016.04.025

© 2016 Elsevier B.V. All rights reserved.
29

Author's personal copy

http://dx.doi.org/10.1016/bs.pbr.2016.04.025


Here, we approach this question by trying to model what this mechanism can and

cannot be. It is now widely accepted that we are born with such mathematics, more

specifically a number, mechanism, but exactly what it is and how it works is dis-

puted. We will refer to this putative mechanism as “preverbal” since there is abun-

dant evidence that it is available to the child before it learns to count with words. The

aim of this chapter is to review statistical properties of models of preverbal magni-

tude processing that could provide a basis for the subsequent acquisition of verbal

counting. Three proposals should be mentioned in this respect.

1.1 ACCUMULATOR MODEL
The first proposal originates in the work by Gelman and Gallistel who postulated that

human infants possess a system of “numerons,” which are “any distinct and arbitrary

tags that a mind (human or nonhuman) uses in enumerating a set of objects” (p. 77),

and they are to be distinguished from “numerlogs,” the “traditional count words.”

Verbal counting depends on a developmental process by which a fixed sequence

of independently acquired numerlogs is linked to numerons (Gelman and

Gallistel, 1978).

They develop this idea in a later theoretical paper (Leslie et al., 2008). First, they

specify numerons as “the brain’s integer symbols” (p. 217) rather than any arbitrary

tags. Second, they explicate numerons in terms of a mechanism derived from work

with other species, usually rats and pigeons, and which they assume is innate in hu-

man infants. This is the “accumulator,” a mechanism for enumeration first proposed

by Gibbon and his colleagues (Gibbon et al., 1984; Meck et al., 1985). The basic

design of the accumulator (Fig. 1) is essentially like a thermometer: the higher

the mercury, the higher the temperature—the greater the accumulation, the larger

the numerosity it represents. The key subcomponents are a “pacemaker” that gener-

ates energy, a “gate” (sometimes called a “switch”) that opens for each object expe-

rienced, and a “storage” which stores a quantum of energy for each “gate” opening.

Pacemaker Gate Storage

FIG. 1

The accumulator. The brain contains a “pacemaker” that generates quanta of energy and

a “gate” that lets through a quantum for each object to be enumerated. The quanta are

stored in the “storage” and the quantity of quanta represents the number of objects

enumerated.

Adapted from Gibbon, J., Church, R.M., Meck, W.H., 1984. Scalar timing in memory. Ann. N. Y. Acad. Sci. 423,

52–77. Meck, W.H., Church, R.M., 1983. A mode control model of counting and timing processes. J. Exp.

Psychol. Anim. Behav. Process. 9(4), 320–334.
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We should note that quite often the term “accumulator” is used to denominate what

we have called “storage.” However, for the considerations of clarity, we will reserve

the term “accumulator” to refer to the whole architecture rather than to its particular

subcomponent.

One further feature of the model is that the mechanism can handle both contin-

uous and discrete quantities. In the case of the accumulator, Gibbon et al. have used it

to explore timing (Gibbon et al., 1984; Meck and Church, 1983)—rats, instead of

responding to a particular number of sounds, are rewarded for responding to a par-

ticular stimulus duration. The mechanism measures the duration by holding the

“gate” open for the duration of the stimulus, and this is then stored in the

accumulator.

Our thermometers come with calibration marks so that we can read off the tem-

perature from a continuum: a particular level represents 30°, and so on. A decent

thermometer is also expected to produce similar readings if the actual temperature

remains the same. This is not the case for the accumulator because its “storage”

comes without “marks” and representations of magnitudes that are quite noisy.

The latter feature reflects the fact that nonverbal number representations obeys a sca-

lar variability criterion (Izard and Dehaene, 2008); that is, the standard deviation of

the error in responses grows proportionally to number magnitude. As Leslie et al. put

it “What an analogue system will not support is the notion of exact equality, or

perfect substitutability, because the mental magnitudes are noisy; they represent

quantity plus or minus some percent uncertainty.” (p. 213). In order to use the accu-

mulator to count, the human learner needs to learn three things, according to Leslie

et al. (see Fig. 2):

(a) To calibrate the accumulator so that each level corresponds to the mean activity

for each numerosity;

(b) To link the calibrations with the independently acquired sequence of counting

words (“compact notation”), which are interpreted as integers “because children

are disposed to entertain integer-valued hypotheses when learning the meanings

of those words” (Leslie et al, 2008, p. 213); and

(c) To learn that the calibration and the counting sequence can continue indefinitely.

For this last characteristic, a simple recursive rule is needed to generate the next

term in sequence to add to the previous term, plus the assumption of oneness

(ONE in Fig. 2).

1.2 ANALOGUE MAGNITUDE SYSTEM
The second proposed model originates in network simulation studies (Dehaene and

Changeux, 1993) and builds on the first, in the sense that it contains an accumulator

as a part of its architecture. The model is shown in Fig. 3. One key feature of this

model, as in the accumulator, is a stage in which the inputs—the objects to be

enumerated—are “normalized.” That is, whatever the object size, the object gets

the same representation on the “location map.” The output of the location map is
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fed to a layer, here called “summation,” where activation and noise are linearly pro-

portional to the number of objects. The additional feature of this model is that the

read-out for a given level of activation in the summation layer is represented in an-

other layer as a Gaussian on a number line. Notably, in the study by Verguts and Fias

(2004) both summation coding and Gaussian coding emerged as a result of training,

whereas in Dehaene and Changeux (1993) these network properties had been

handwired.

FIG. 2

A model of number learning and representation. “The model combines continuous

magnitude (accumulator) and integer representations with three types of learning. …

Accumulator magnitudes are depicted as inherently noisy … [The] model adds discrete

representations of exact integer values that are generated by a successor function S. These

are depicted as a series of hash marks in a grid that can be calibrated against accumulator

magnitudes and associated with unique identifier symbols (such as “ONE”). The model

identifies three types of learning directed by these systems of representation. First, integer

values can be recursively realized by computing the function S (realization learning). Second,

realized integer values (stored in memory) can be calibrated against continuous magnitudes

by stretching or compressing the length of the grid relative to accumulator magnitudes

(calibration learning). Third, realized integer values can be mapped to a compact notation

(compact notation learning). A compact notation can be learned through a natural language

that has count words. At least three variants of this model are possible, in which only the

symbol ONE is innate; or ONE and TWO; or ONE, TWO, and THREE are innate.”

From Leslie, A.M., Gelman, R., Gallistel, C.R., 2008. The generative basis of natural number concepts. Trends

Cogn. Sci. 12(6), p. 214. doi:10.1016/j.tics.2008.03.004.
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From the above description, it can be seen that the model does not contradict the

accumulator; it rather complements it with Gaussian read-outs. The point of devi-

ation is, however, the view on the scaling of the Gaussians. In the original version

of the model, as can be seen from Fig. 3, the magnitude “clusters” were mapped

onto linear scale. The possibility of a compressive scale was briefly discussed

(p. 393) but not implemented in the model. In the subsequent research, Dehaene

and colleagues assume log compression of the magnitude representations

(Dehaene, 2003; Izard and Dehaene, 2008; Piazza et al., 2004). Moreover, the

emerging Gaussians in the study by Verguts and Fias (2004) showed a positive

skew in the activity distribution, which is consistent with an idea that a “read-

out” of the magnitude is represented on a compressed number line. In the remainder

of the chapter, we will refer to a model that assumes a logarithmic spacing between

Gaussian magnitude representations on a number line as the analogue magnitude

system (AMS).

Visual input Object location
and normalization

50 Input clusters 9 × 50 Array of
DOG filters

15 Clusters with
increasing threshold

16 Numeroslty
clusters

1

2

3

4

5

Numerosity
detection

FIG. 3

A model of the numerosity detection system “Objects of different sizes at the input are

first normalized to a size-independent code. Activations are then summed to yield an estimate

of numerosity.” The summed estimate is then read-out as Gaussian on an internal linear

number line (numerosity clusters).

From Dehaene, S., Changeux, J.-P., 1993. Development of elementary numerical abilities: a neuronal model.

J. Cogn. Neurosci. 5, p. 395.
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There is a clear theoretical rationale for proposing log compression for preverbal

magnitude representations. First, unlike verbal counting system, preverbal system

does not use positional notation in order to represent arbitrarily large magnitudes.

This creates problem of numerical overload. (We will refer to an ability to handle

this problem as autoscaling; Gallistel, 2011). Log scaling represents an efficient

way of addressing this issue: the greater the value is the smaller system’s gain

is. Second, one can also assume an independence of noise characteristics from a

magnitude value to satisfy scalar variability criterion—it automatically follows

from first property (ie, a smaller gain for large numbers implies a greater overlap

of Gaussians).

One alternative to the model proposed by Leslie et al., requires that verbal

counting itself reconfigures the preverbal mechanism. The best-known and most

elaborated account has been proposed by Carey and colleagues and involves a

“bootstrapping”—inductive generalization—from familiarity with small sets of

objects experienced in the context of counting words to exact enumeration for

larger sets (Carey, 2009; Le Corre and Carey, 2007). One problem with this pro-

posal is that the mechanism by which generalizing from Gaussian representations

of magnitude, which overlap and are at best only approximate representations of

numerosity, is still unclear. Because this model remains underspecified, it will not

be discussed further.

2 NEURAL IMPLEMENTATION OF A PREVERBAL SYSTEM
AND VERBAL COUNTING SERIES
There is now substantial evidence concerning the neural underpinnings of the

preverbal and verbal magnitude representations. Substantial evidence has been

accumulated to date to suggest that parietal cortex is a critical area for implement-

ing preverbal magnitudes. For instance, individual neurons in monkey intraparietal

sulcus (IPS) demonstrate behavior that can be characterized as numerically selec-

tive filtering, such that their response rates form a Gaussian-like tuning curve

around a preferred magnitude (Nieder and Miller, 2003; Nieder et al., 2002).

Indirect evidence for this coding schema has also been demonstrated in fMRI

of human subjects, indicating that IPS provides a “read-out” of numerosity that

is independent of visual cues or presentational modality (Castelli et al., 2006;

Harvey et al., 2013; Piazza et al, 2004). The IPS is also likely to be a region

where magnitude representations become associated with symbolic numerals as

its activity is modulated by magnitudes presented in a symbolic format as much

as in a nonsymbolic format (eg, Piazza et al, 2004). Evidence for summation

(accumulator) coding remains rather sparse, but a few studies suggest that the ac-

tivity of SPL and its homolog in the monkey’s brain, the lateral intraparietal region

(Sereno et al., 2001), exhibit features of a linear accumulator (Roitman et al., 2007;

Santens et al., 2010).
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Even though, to the best of our knowledge, formation of verbal counting

sequences in the brain has never been investigated, neural mechanisms implicated

in related processes has been described. Hippocampal formation has been shown

to play an important role in the formation of temporal and spatial sequences

(Foster andWilson, 2006; Schendan et al., 2003), and creating semantic associations

between events (Henke et al., 1999). Its neurons in area CA1 form neuronal ensem-

bles, or cliques (Lin et al., 2005), that respond similarly to a particular attribute of an

event—ranging frommore generic to very specific. Their coordinated activity makes

them a robust coding unit that, when considered in the context of the activity of other

cliques, can be viewed as a neural implementation of a binary code (Lin et al., 2006).

For example, different cliques can, respectively, encode (A) unusual events in gen-

eral, (B) disturbing motion (C) shaking, and (D) dropping. The earthquake would be

encoded as an increased activity of cliques A, B, and C but not D (binary code: 1110),

whereas elevator drop as an activity of cliques A, B, and D but not C (binary code:

1101). These findings can be extrapolated to the symbolic numerals, which hierar-

chical relations in counting sequences are explicated by the use of positional

notation.

3 OUR AIM
We preempt further discussion by noting certain gaps in the account of Leslie et al.

that to date represents the most explicit attempt of relating a preverbal mechanism to

verbal counting. To reiterate, two features—the concept of “oneness” and the recur-

sive rule “S(x)¼x+ONE”—underlie the transition from preverbal magnitude repre-

sentations to the counting series according to this account. It assumes, without

argument, that these faculties originate somewhere in the brain and are readily avail-

able for use. This is equivalent to saying that verbal counting is not an emergent prop-

erty of a preverbal mechanism; the former emerges as a result of linking two

independent processes—preverbal magnitude system and a sequence-processing al-

gorithm of an unknown origin.

Our goal here is to explore an alternative possibility that verbal counting is an

emergent property of preverbal mechanism, though, of course, the counting words

themselves have to be separately acquired. The remainder of this chapter will

be spent in assessing the strengths and weaknesses of these models in terms of

their capacity to emulate the statistical properties of verbal counting. The level of

our analysis is purely quantitative. That is, we are looking for models for prever-

bal estimation ability that can generate outputs that are statistically commensurate
with the verbal counting process, with the focus on whether the models can

satisfy three criteria set by verbal counting process—transition to exact repre-

sentations, autoscaling, and commensurability of noise characteristics. We will also

outline the modified architectures that may help improving models’ capacity to

meet these criteria.
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4 BINOMIAL ACCUMULATOR
In order to analyze the candidate models, it would be convenient to parameterize

them as architectures in which building blocks are artificial neurons. A simplified

version of accumulator architecture could be a circuit consisting of a “gate” neuron

that signals an occurrence of a new item to be enumerated by a discharge of activity

and a “storage” neuron—an accumulator—that responds to a new arrival by increas-

ing its discharge rate. Because we are interested only in a cognitive aspect of the

model, this architecture does not include a pacemaker, which characterizes physio-

logical state of the organism. In all simulations, we assume that the external signal is

not mediated by the pacemaker and enters the “gate” directly.

We first consider models that assume a linear summation of the inputs in the stor-

age neuron and therefore they necessarily generate a linear scale of the magnitude rep-

resentations.We start with an architecture that will serve as a model of verbal counting

and then, through a series of adjustments to this model, we will attempt to come up

with an architecture that is both statistically related to the original model and, at the

same time, characterizes behavioral patterns of nonverbal magnitude processing.

We will call this target model as a binomial accumulator (see Fig. 4 and its cap-

tions for parameters of the simulation). Unlike other accumulator models considered

Binomial accumulator
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FIG. 4

The noise characteristics of binomial accumulator was simulated as a system that

accumulates objects presented sequentially in an exact manner, with every additional object

represented as a unit magnitude, but subject to the possibility that some objects will be

not be registered (probability of omission for this plot¼0.3). The sum of objects registered

by the system constitutes a magnitude accumulated over time. Here and below, the

error has been estimated over 1000 simulated trials. The mechanism follows binomial

distribution that has been implicated in verbal counting (Cordes et al., 2001). To satisfy scalar

variability criterion, the line representing the error should be horizontal. Inset: the

characteristic distribution of the accumulated magnitude at a particular time point.
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below, the gate neuron of the binomial accumulator transmits a sequence 1’s, and the

accumulator neuron also precisely logs new arrivals. Omissions can nevertheless

occur when some of 1’s may fail to be registered; for example, when a transmission

sequence is rapid. This would produce variability with respect to actual number of

1’s transmitted by the gate neuron.

This model, despite its simplicity, captures main characteristics of the per-

formance in the verbal counting paradigm as described in the study by Cordes

et al. (2001). Here, participants see a number and are required to match magnitude

of the number with a number of key presses. In the condition when counting of

presses was allowed, the behavioral signatures of the participants’ performance

indicated a linear scaling and binomial variability. The latter implies that the

standard deviation of noise is proportional to a square root of the mean. On a

log–log plot, showing a ratio of a standard deviation to a mean as a function

of a mean, this relation would be reflected by a line with a negative slope.

It can be seen that the binomial accumulator replicates this pattern (Fig. 4).

The additional observation is that the distribution is roughly symmetrical around

mean (Fig. 4, inset).

5 POISSON ACCUMULATOR
Next, we can consider the behavioral results from the articulatory suppression con-

dition in which participants have to repeat “the” rapidly in order to prevent verbal

counting (Cordes et al., 2001). This restriction had a distinctive effect on the behav-

ioral profile. The scaling of magnitudes remained linear, but the noise distribution

obeyed scalar variability, ie, the performance becomes noisier with error standard

deviation being proportional to the mean.

As we noted previously the latter feature represents an indispensible property

of approximate number processing (Izard and Dehaene, 2008), and the design of

a candidate model for preverbal magnitude mechanism should be able to mirror

this sort of behavior. On a log–log plot such relation would be reflected by a line

with a zero slope. In order to approximate this result, we are making the following

adjustments to the binomial accumulator model. We keep a “gate! storage” archi-

tecture of the accumulator unaltered but allow the “gate” neuron to emit parcels of

activity drawn from a Poisson distribution instead of a binomial distribution. We

will refer to this architecture as a Poisson accumulator (see Fig. 5 and its captions

for the parameters of the simulation). This adjustment is motivated by the fact that

neurons in the brain do not use the binary code; the signal is propagated using

Poisson-like discharge (Ma et al., 2006; Shadlen et al., 1996; Softky and Koch,

1993). As the results of the simulation show, the modification has no effect on

the error pattern: the relation between error and mean continues to obey a square root

rule. This is not particularly surprising considering that the binomial accumulator

represents a special case of the Poisson accumulator (ie, the latter processes a wider

range of values, not just 1’s).
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6 DOUBLY STOCHASTIC PROCESS
The above demonstration shows that the linear accumulator model does not

provide an unambiguous solution to account for the variability pattern observed

in nonverbal magnitude processing. The architecture is actually better suited for

modeling the variability pattern in verbal counting. As this has been well realized

by earlier theorists (Gibbon et al., 1984), in order to meet the criterion of scalar var-

iability, accumulator model must implicate additional source of variability. We will

refer to this as a doubly stochastic process (Churchland et al., 2011).

Several proposals for the second source have been discussed in literature, for ex-

ample, a multiplicative effect of noise in memory, whereby the variability of the ac-

cumulator is accentuated by the volatility of memory traces (Gibbon, 1992). Here,

we emulate the process by assuming that, in addition to noise expected given a par-

ticular accumulator rate (which is Poisson), the other source of variance comes from

trial-to-trial fluctuations of accumulation rate per se. The choice of gate rate as a

source of variability is motivated by neurophysiological evidence from studies of

neural basis of perceptual decision making (Churchland et al., 2011), but not neces-

sary the only scenario that would give rise to scalar variability (see Gibbon et al.,

1984; Killeen and Taylor, 2000). It can be seen (Fig. 6) that the error pattern of this

process is close to matching the scalar variability criterion (the line is approximately

Poisson accumulator
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FIG. 5

Noise characteristics of Poisson accumulator. Unlike binomial accumulator that processes

a sequence of 1’s, the “gate” neuron of Poisson accumulator emits particles of energy,

which magnitude is drawn from a Poisson distribution. To generate the plot, Poisson rate

l was set to 5. Inset: characteristic distribution of the accumulated magnitude at a particular

time point.
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horizontal). There is an additional feature that emerges in this process—the distribu-

tion of the error is not symmetrical but is positively skewed (see Fig. 6, inset).

7 IMPLICATIONS OF LINEAR ACCUMULATOR MODELS
One can learn several things about the workings of the linear accumulator model

from the above simulations. First, binomial and Poisson (including doubly stochas-

tic) accumulators are statistically related constructs in terms of scaling and noise

characteristics and verbal counting can be characterized as a special case of the ac-

cumulator model, the one that uses a binary code. Second, the accumulator model

that meets scalar variability criterion requires more than one source of error, which

generically can be characterized as the fluctuations in the states of the generative

model (as opposed to variability of model output given a particular state); the digres-

sion to the binomial-like pattern of variance in the accumulator amounts to

“switching off” the variability in the secondary source of error. Finally, it turns

out that a linear doubly stochastic process is able to generate positively skewed dis-

tributions. This observation is of a particular importance given that on more than one

occasion the asymmetry of a distribution was utilized as a decisive argument in favor

of log-scale representations (Nieder and Miller, 2003; Piazza et al., 2004; Verguts

and Fias, 2004). Here, this feature emerges as result of a linear process (also see

Ratcliff, 1978).

Doubly stochastic accumulator
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FIG. 6

Noise characteristics of a doubly stochastic accumulator was simulated by drawing

a sample from the gamma distribution (shape parameter¼5, scale parameter¼1) and

using this value to initialize gate rate (Poisson parameter l) for each simulated trial. Inset:

the characteristic distribution of the accumulated magnitude at a particular time point.
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One can, however, note substantial shortcomings of the linear accumulator

models if considers the information processing mechanisms that they are supposed

to model. First, the variability in the verbal counting stems from input omissions,

ie, from the failures to map an item to a subsequent member of the symbolic num-

ber sequence. This is not the case for a Poisson accumulator. Its imprecision is not

(or at least not only) a result of the failure to register the input; the primary source

of the error is a noisy code. Second, a linear Poisson accumulator is unable to

represent orders of magnitude, which means it is unable to represent arbitrary

large magnitudes without an overload. Consequently, the utility of the model in

serving as a precursor for verbal counting is contingent on its ability to autoscale

(Gallistel, 2011).

8 NUMERICAL CONSEQUENCES OF THE AMS HYPOTHESIS
An efficient way of implementing the autoscaling principle is of course log compres-

sion. However, before we consider architectures that are consistent with the AMS

hypothesis of approximate number, we would like to highlight several numerical is-

sues that are associated with accumulator-to-(log) AMS architecture, proposed in

computational studies by Dehaene and Changeux (1993) and Verguts and Fias

(2004).

Even neural network theorists would have to acknowledge that AMS func-

tions as a map in their networks—a summary statistic for the inputs acquired

through the work of a linear accumulator. There are no signs that the summation

layer in their networks responds to a stimulus number in any but a perfectly linear

way. That creates an internal contradiction for a claim (eg, Verguts and Fias,

2004) that an accumulator-to-AMS architecture produces a logarithmically scaled

numerical code.

One way to circumvent this issue is to propose that summation is performed in a

log space. This is, perhaps, a bad solution. If an accumulator has to summate N in-

dividual objects in a log space, then it would need to be able to summate N logs of 1,

that is, summate N zeros. The output of summation would always be a zero, irrespec-

tive how bigN is. More generally, the sum of logs is not equal to a log of a sum, ie, the

final result for an accumulated activity in the log space would not comply with a log

hypothesis.

The other possibility is that a conversion from a linear to log scheme may be due

to a transfer function from the accumulator to the AMS. In other words, even though

the accumulator operates linearly, there may be reasons that the map or read-out

represents the results of summation as their log. This possibility is perfectly valid,

but its ramifications are less attractive: such model would loose the ability to

autoscale because it relies on the processing layer that linearly increments its

activity. From a computational perspective, there is no an added value in assuming

a log scaling for AMS Gaussian. Such system still requires a solution how to

autoscale a linear accumulator.
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9 UTILITY OF AMS HYPOTHESIS
Despite the complications outlined earlier, there are two facts that motivate further

exploration of the AMS hypothesis.

First, the description of variance structure is somewhat more parsimonious

for the model. The scalar variability emerges naturally from the design of the

system—only an assumption of a log scale is required. In other words, if one could

measure AMS noise directly, one would find that system’s internal noise at any

time point scales well with scalar variability criterion. The performance measured

at a particular trial would in essence represent an independent drawing from

a noise distribution with constant parameters. Unlike linear accumulator model

it does not require a secondary source of variability to account for behavioral

observations.

The second fact is that in a typical paradigm studying approximate number a

subject would either (a) be presented briefly with an array of dots, that varies in

its low-level features, such as dot size, making then difficult to use for numerosity

estimation, or (b) be required to estimate without counting a sequence of visual or

auditory signals. This brings forth a crucial distinction between two processes, which

is not always acknowledged (but see, for example, Castelli et al., 2006; Nieder et al.,

2006). In the first case a subject is required to pool numerical information over space,

whereas in the second case information is pooled over time. The comparison of find-

ings from two paradigms (Cordes et al, 2001; Izard and Dehaene, 2008; Whalen

et al., 1999) suggests that even though there is a strong case for sequential number

being represented on a linear scale, there are also reasons to believe that simultaneous

numerosities, or “a visual sense of number,” as it is referred to in Burr and Ross

(2008), is represented logarithmically. These two factors, model parsimony and

the distinction between simultaneous and sequential number, motivate attempts to

build a case for AMS.

10 AMS INTEGRATOR
Before we attempt to build what we call an AMS accumulator, a question can be

asked whether the process of extracting simultaneous numerosity should necessarily

be characterized as a numerical process; does the visual sense of number involve

enumeration of the dots at all? The studies by Gebuis and Reynvoet demonstrating

that simultaneous numerosity judgments are biased by a continuous quantity, such as

overall dot area (Gebuis and Reynvoet, 2012a,b) suggest that it may not necessarily

be the case—simultaneous number may represent a second-order statistic for

continuous quantities that correlate with number.

To highlight consequences of this view, one can consider a simple case. Let

us suppose that Visual Number¼Density*Area. Given that the subjective scale

for both density and area can be assumed to be log, the numerosity computation be-

comes formally equivalent to a weighted integration problem, ie, N¼wdD+waA,
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whereD, A, and N are estimates of, respectively, density, area, and number, all in log

space, and wd and wa are respective weights. Keeping log scale of number is an

important part of these computations, because it allows for summation of relevant

stimulus features. In other words, AMS would act here as an integrator, at which

a number representation becomes realized for the first time.

11 BUILDING AN AMS ACCUMULATOR
An alternative to the above could be to construct AMS as an accumulator where a

log-like scaling would emerge in natural way from its dynamics. One probable so-

lution is motivated by recurrent networks and, more specifically, by a recent simu-

lation study of Wang and colleagues, showing the emergence of different timescales

from a hierarchy of structural connections (Chaudhuri et al., 2015); hierarchically

lower units demonstrated transient responses, whereas the higher association areas

accumulate inputs over time and demonstrate a persistent activity. Furthermore, a

computational study by Howard et al. (2014) proposes that neuronal ensembles com-

prising neurons with varying time constants can enable a reconstruction of temporal

and positional sequences in memory, thereby linking this architecture to computa-

tions that may take place in hippocampus.

To emulate the behavior of an accumulator system with the above dynamics, we

assume a two-unit hierarchy, with units differing in their timescales and connected

sequentially such that the unit with a short time constant receives the direct input

from the environment and provides an input to the unit with longer time constant.

A simplest way to implement the differences in the timescale is to represent each

unit as a “leaky” accumulator, with the (hierarchically) first unit leaking more rap-

idly than the second unit. The leaking rate here serves as a proxy for the differences in

the timescales.

Fig. 7 shows the results. The activity rate of the first unit with a transient

activity, following a short burning-in period oscillates around a certain value.

In many ways its behavior is comparable to the behavior of a “gate” neuron in

the conventional accumulator models. The second unit, which “leaks” at a slower

rate, continues to grow for a longer period and its trajectory demonstrates a non-

linearity reminiscent of a log function. The architecture can clearly handle the

overload issue. If magnitudes grow to extreme values, the system may no longer

be able to register new values and therefore its response rate saturates. Such be-

havior has a good ecological relevance. If a display of dots (for simultaneous

numerosity) contains a large numerosity, it is plausible that some of the items

may fail to attract the attention or receive very little representational space. How-

ever, the noise of the system violates the criterion of scalar variability. Interest-

ingly, the violation occurs even if one implements a secondary source of

variability, similarly to what we have done in the case of the doubly stochastic

accumulator (see inset in Fig. 7).
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12 AMS ACCUMULATOR OR AMS INTEGRATOR?
The utility of the computational models, including the simple models considered in

this chapter, is twofold: (a) they summarize, with a varying degree of complexity,

intuitions about unobserved internal variables and (b) one can use them as a gener-

ative process in order to match actually observed behavioural patterns. In this sense,

they are extremely useful tools for generating predictions for experimental testing.

Unfortunately, in the domain of cognitive research on number, with an exception of

the brilliant work by Dehaene and colleagues (eg, Piazza et al., 2004; Izard and

Dehaene, 2008) and Gallistel and colleagues (eg, Cordes et al., 2001, 2007), the

model-based approach to the experimental design has not been fully exploited.

Meanwhile, this approach allows addressing queries that otherwise would be dif-

ficult to answer. To provide an example, several studies have shown that precision of

the visual sense of number predicts the level of mathematical achievements in school

(Halberda et al., 2008). By contrast, a study by the author of this chapter suggests that

this association is not unique—mathematical achievements are also associated with

processing a variety of visual features (Tibber et al., 2013). Hypothetically, even

showing that numerosity is a better predictor would not settle the argument, because
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FIG. 7

“Leaky” accumulator comprising a circuit of two neurons with different activity timescales.

Scales are linear. The neuron with a transient activity provides inputs to the neuron with

a persistent activity. The gain in a “leaky” accumulator at a time t was simulated using

dynamic equations dXt¼ I�kXt�1, where I is Poisson distributed (l¼5). The “leak” rate k

was equal to 0.1 and 0.01 for the neurons with short and long time scales, respectively. Inset:

log–log plot of noise characteristics as a function of magnitude.
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it is not counterintuitive to argue that the proficiency in math is linked not so much to

the ability to accurately discriminate continuous magnitudes as to the ability to in-

tegrate information from several continuous magnitude modalities (as alleged by

AMS integrator model).

The problem can be addressed from a different angle. It is evident that the AMS

accumulator and integrator presume rather different generative processes. The two

hypotheses can be pitted against each other using a standard numerical discrimina-

tion task (Bahrami et al., 2013; Cappelletti et al., 2013; Halberda et al., 2008). AMS

accumulator has an indispensible temporal dimension. The parallel processing of

numerosity is restricted to the few items in the subitizing range; therefore, at least

a partly serial process should be utilized in order to accumulate items over visual

space. This is not the case for AMS integrator whose task is only to combine infor-

mation from various sources. Consequently, if an accumulator-like mechanism is im-

plicated in the processing of simultaneous number, a prediction would be that an

increase of an overall number of dots in the display should lead to an increase of

RT, as more time may be needed to pool a larger number of inputs together.

12.1 METHOD
12.1.1 Participants
Forty-eight adult individuals (mean age¼23.9 (3.2), 24 male) participated in the ex-

periment. Most of them were the students in the National Chengchi University,

Taiwan.

12.1.2 Stimuli
In every trial, two sets of blue and yellow dots were presented. The participants were

asked to judge as fast as possible whether there were more blue dots or more yellow

dots. The ratio of number of dots between blue and yellow were 2 (2:1), 1.33 (4:3),

1.2 (6:5), and 1.14 (8:7), with a total number of dots in a display varying between

11 and 30. Yellow dots were more numerous in a half of the trials. The cumulative

area and dot size were controlled by equaling the total number of blue pixels to

the total number of yellow pixels in half of the trials and by equaling the size of

the average blue dots to the size of the average yellow dots in the other half. The

total length of the experiment was 320 trials.

12.1.3 Analysis
Using the linearmixed-effect regressionmodel, we assessedwhether the reaction times

would be affected by a total number of dots independently from the numerical ratio

between two sets of dots. The model included a total number of dots, a ratio between

numerosities of the two sets and their interaction as predictors and mean subject RT

per each unique combination of the ratio and the total number of dots as a dependent

variable. Prior to averaging, RTs were logarithmically transformed as they demon-

strated considerable positive skewness. The interindividual variability was accounted

for by using participants as a random factor in order to group model intercept.
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12.2 RESULTS AND DISCUSSION
The analysis demonstrated that RT decreased with an increase in ratio (t (524)¼
16.03, p<0.001, b¼�0.53, CI¼ [�0.59 �0.46]), consistent with expectations that

stimuli that are easier to differentiate would require shorter decision times. Contrary

to predictions for accumulator mechanism, RT decreased as the total number of dots

increased (t (524)¼2.13, p¼0.034, b¼�0.0052, CI¼ [�0.0088 �0.0003], Fig. 8).

There was no significant interaction between two factors, t<1. To verify that the

effect was driven by the total number of dots in two sets as opposed to the numerosity

of either smaller or larger sets or both, we compared the above model to the models

that included numerosities of smaller set or larger set or both as predictors instead of

the total of numbers of dots. These alternative models demonstrated a worse fit (on

the basis of Bayesian Information Criterion) to the data than the original model.

To summarize, the results of the earlier analysis demonstrate that, even for a rel-

atively small range of dots, the RT does not increase with a number of dots in the

display. In fact, the reaction times decreased. This result fails to support the hypoth-

esis that the process of dot accumulation takes place in this task. One might argue,

though this requires further study, that the decrease in RT occurred because more

dots mean more information is available to the perceptual mechanism, hence the eas-

ier it is to make the discrimination (also see Burr et al., 2010; Vetter et al., 2008, on

the role of attention in numerosity comparison and estimation).
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FIG. 8

The average response times as a function of the total of number dots residualized with respect

to the ratio between two sets of dots.
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13 REPRESENTATIONS OF MAGNITUDE ORDERS:
STOCHASTIC CASCADES
The question that we will attempt to answer in the end is whether we can build a linear

system that would also be able to address the issue of autoscaling. After all, the linear

accumulator appears to have attractive statistical features, which bears similarity with

the verbal counting process,most notably its linear scale. One solution to the autoscaling

problem for orders of magnitude is to implement a “compact notation”—for example,

the familiar positional notation or the hierarchical binary coding system exemplified by

neuronal ensembles in the hippocampus. After all, “oneness,” which is an important

concept for Leslie et al. model, is just a special case of a magnitude order.

A simple schema for tackling the issue of autoscaling is to imagine a hierarchy of

neurons, for which the labels “gate” or “storage” would depend on a reference point.

If we consider a particular neuron, it can be seen as a gate for a hierarchically higher

neuron in the circuit and it would be a storage neuron otherwise. (Even for the models

considered above, the first unit in a sequence can be considered as a “storage” neuron

with respect to external stimulation.)

The model works as follows. The parcels of energy that are emitted by the gate

can be seen as a content temporarily stored in the neuron—up to the moment when it

passes its content to the next neuron, whereupon it resets to zero (¼the “gate” closes).

As has been argued by Killeen and Taylor (2000), this system, which they brand a

“stochastic cascade,” is perfectly suited for the task of being a neural version of, say,

a decimal number system. The work of such accumulator with three hierarchical

levels is shown in Fig. 9. As it also can be seen (Fig. 9, inset) the variability pattern

is similar to that observed for a Poisson accumulator. This is not surprising, consid-

ering that the latter is just a special case of a stochastic cascade. In other words, for a

system to satisfy a scalar variability criterion, at least one of the units in this archi-

tecture should demonstrate doubly stochastic behavior.

Why can a hierarchical accumulator serve as a key link to developing exact repre-

sentations? This is because at some order of a magnitude, the noise associated with

stimulus processing becomes too small to affect this order. For example, there maybe

subjective uncertainty about how many dots are presented on a screen, say, 20 or 30.

This uncertainty would make a strong impact on the state of the first-order accumulator

that is tuned to minute fluctuations of stimulus values. However, these fluctuations

would make a much less impact on the state of the second-order accumulator and vir-

tually no impact on the state of the third-order accumulator. For this architecture, “exact”

would mean “above the noise levels associated with processing stimulus parameters.”

14 LOG VS LINEAR: IS THIS AN ISSUE (FOR LEARNING)?
It has been argued (eg, Dehaene, 2003) that the scale of the accumulator-to-AMS

architecture can be considered automatically compressive if noise increases with

an increase in numerosity. Behavioural consequences of log scale with constant error
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and linear scale with error obeying scalar variability are essentially identical; there-

fore, the selection of a model for the behavior is a matter of convenience rather than

theoretical necessity. A few studies however have shown that the claim that two hy-

potheses generate identical predictions is not accurate (Gibbon and Church, 1981;

Karolis et al., 2011). This becomes evident as soon as a response to stimuli requires

performing (perhaps, implicitly) arithmetical operations (Karolis et al., 2011).
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Stochastic cascade. The process was simulated as a circuit of accumulators where each

subsequent neuron in the chain increased its firing rate by a value drawn from Poisson

distribution (l¼10), subject to the condition that the input from a preceding neuron passes

a threshold, at which case the activity of the preceding neuron is reset to zero. The

threshold was implemented using a logistic function. H1, H2, and H3 stand for the 1st, 2nd,

and 3rd hierarchical levels, respectively. Each level is a representation of a notional

magnitude order, analogously to units, decades, and hundreds of the decimal number

system. Inset: log–log plot of the error as a function of magnitude mean.

4714 Log vs linear: Is this an issue (for learning)?

Author's personal copy



A transition from a log to linear scale is also not straightforward if viewed from

the perspective of a learner. Learning to count from log AMS would effectively

means learning to use exponentiation. Leaving aside doubts that a child can perform

this operation, we are still left with the problem that an antilog of an integer is

normally not an integer, ie, it is not countable.

The above intuition seems to contradict the experimentally observed data. It has

been shown that the performance of young children on a task that maps number sym-

bols onto a physical line with its end numerically defined—eg, 0–100—is best

described by a subjective magnitude scale that, according to Siegler and colleagues,

is log compressed (Siegler and Opfer, 2003). However, not all children show this,

and those that do, quickly learn to mark the line as if their subjective scale of

magnitudes is linear not log (Iuculano et al., 2008). In any case, it is not clear that

one can infer from the performance on this task the nature of the subjective scale of

magnitudes: there will be a cascade of cognitive processes between the subjective

scale and the external performance (Barth and Paladino, 2011; Karolis et al., 2011).

15 CONCLUSIONS
In a lifespan perspective, we should consider that the infant comes into the worldwith a

mechanism that provides crucial support for the long process of learning to count. Our

review of statistical facts associated with various accumulator and AMS architectures

indicate that linear accumulator architecture, taken as a model for preverbal magnitude

mechanism, possesses distinct characteristics that can enable development of verbal

counting. Specifically, its error and scaling characteristics are commensurate with a

model of verbal counting, the one we called a binomial accumulator. A hierarchically

organized circuit of accumulators is able to implement the discrete order of magni-

tudes, and hence, the ONE in the model of Leslie et al. (2008).
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