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One specific cause of low numeracy is a deficit in a mechanism for represent-

ing and processing numerosities that humans inherited and which is

putatively shared with many other species. This deficit is evident at each

of the four levels of explanation in the ‘causal modelling’ framework of

Morton and Frith (Morton and Frith 1995 In Manual of developmental psycho-
pathology, vol. 1 (eds D Cichetti, D Cohen), pp. 357–390). Very low numeracy

can occur in cognitively able individuals with normal access to good edu-

cation: it is linked to an easily measured deficit in basic numerosity

processing; it has a distinctive neural signature; and twin studies suggest

specific heritability, though the relevant genes have not yet been identified.

Unfortunately, educators and policymakers seem largely unaware of this

cause, but appropriate interventions could alleviate the suffering and handi-

cap of those with low numeracy, and would be a major benefit to society.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
Napoleon famously said that mathematics is ‘intimately connected with the

prosperity of the state’ (cited by Boyer & Merzbach [1], p. 466). In his foreword

to the Cockcroft 1982 report on mathematics education, Sir Keith Joseph, Sec-

retary of State for Education and Science, wrote ‘Few subjects are as

important to the future of the nation as mathematics’ [2, p. iii]. Since Cockcroft,

in the UK alone there has been Professor Adrian Smith’s report on post-14

maths [3] and Sir Peter Williams’ report on primary maths [4]. Similarly, the

US National Research Council [5] noted that ‘The new demands of international

competition in the twenty-first century require a workforce that is competent in

and comfortable with mathematics’; and to that end ‘The committee [of experts]

was charged with examining existing research in order to develop appropriate

mathematics learning objectives for preschool children; providing evidence-

based insights related to curriculum, instruction and teacher education for

achieving these learning objectives’ (p. 1). This concern for the general level

of mathematics—I will return specifically to numeracy in a moment—is under-

standable, and in economic terms, justifiable. An OECD modelling exercise

showed that the level of maths attainment is a causative factor in long-term

economic growth.

These reports focused on the standards of teaching and teachers, so for

example, Cockcroft required better mathematics education for teachers, and

Smith’s report recommended the setting up of a National Centre for Excellence

in the Teaching of Mathematics (which indeed happened). Improving teaching

would, it was implied, improve the average level of attainment. More specifi-

cally, a study by the UK’s Department for Education and Employment in

1998, titled Numeracy Matters, made a range of recommendations about the

teaching of numeracy to raise the average level of attainment [6].

Now a national average does not show the range of individual differences in

maths attainment. According to the most recent Programme for International

Student Assessment (PISA) study, ‘23% of students in OECD countries, and

32% of students in all participating countries and economies, did not reach
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the baseline Level 2 in the PISA mathematics assessment of

15 year olds. At that level, students can only extract relevant

information from a single source and can use basic algor-

ithms, formulae, procedures or conventions to solve

problems involving whole numbers’ [7, p. 4]. This failure to

reach Level 2 varied from 3.8% in Shanghai, China to 74.6%

in Peru. In the USA, it is 25.8% and in the UK it is 21.8%.

These reports did not address the question as to why some

learners are stuck at the bottom of the distribution, apart from

inadequate access to appropriate teaching. The recently cre-

ated charity, National Numeracy, aims to raise the standard

of numeracy in the UK. Their starting point is ‘that a

major shift in attitudes is key to this’. The problem lies with

‘negative attitudes’ (https://www.nationalnumeracy.org.uk).

Of course, there have been an enormous variety of studies

using a variety of social and cognitive independent variables

to account for a wide variety of dependent numeracy

measures. There is no space in this brief review even to list

them all. Among the social factors are parental education,

socio-economic status and teaching quality [8]. The drivers

are intercorrelated to some extent, and they are linked by

the amount of numerical activities in the home. That is,

parents, especially mothers, with higher educational levels

are more likely to carry out numerical activities with their

children, including sharing counting practices, explicitly

naming numbers when shopping, counting steps and body

parts, and so on. These activities, though associated with par-

ental education and socio-economic status, have a specific

effect over and above these two variables [9].

Among the cognitive factors most usually cited are intelli-

gence and memory. Studies have found a correlation between

IQ scores and maths attainment in school. To take just two

representative examples of such studies: a study in adults,

of non-verbal intelligence measured by Ravens Advanced

Progressive Matrices [10], spatial ability and processing

speed-predicted SAT maths scores [11], and a study of the

effects of IQ in first Grade pupils in the USA, found that

low IQ children compared with their peers were significantly

worse on a standard test of mathematical reasoning, and on

number naming, writing numbers to dictation and on

number comparison [12]. Low IQ was defined as IQ , 85

(1 s.d. below the population mean) and average to high IQ

(IQ . 85) classified on the basis of vocabulary and block

design (from the WIAT [13]). However, as I will show in

detail, normal or superior IQ is not sufficient for good numer-

acy; and low IQ is not sufficient for poor numeracy. So, for

example, Zacharias Dase (1824–1861), an extraordinary calcu-

lator who, for a time, assisted Gauss in calculating tables, was

credited by distinguished mathematicians, including his col-

laborators, with ‘extreme stupidity’. One pair of twins with

prodigious abilities for calendrical calculation were estimated

to have IQs in the 60s [14]. Mitchell in a review of mathemat-

ical prodigies noted that two prodigious calculators, Fuller

(1710?–1790) and Buxton (1702–1772), ‘were men of such lim-

ited intelligence that they could comprehend scarcely

anything, either theoretical or practical, more complex than

counting’ (pp. 98–99). One autistic boy, unable to speak or

understand language, and with a very low measured IQ,

was able to identify large primes and to extract factors of

other numbers faster than an adult with a maths degree [15].

It is a characteristic of low-attaining children to have trou-

ble recalling arithmetical facts, and the worse they are, the

lower proportion of their correct addition answers are
solved by retrieval [16]. So why do children with low or

very low attainment fail to use retrieval? Is there something

wrong with long-term memory in general, either in storage

or retrieval processes? Unfortunately, this is rarely if ever

tested in low attainers except with arithmetical material.

Short-term, or ‘immediate’, memory span—immediate

repetition of words or non-words—has been correlated with

addition accuracy and strategy sophistication in 6-year-olds

[17]. Studies specifically of mathematically low-attaining

children found effects only when related to memorizing

numerical material, such as forward digit span [18,19].

In high-attaining calculators, such as Rüdiger Gamm, we

find domain-specific effects. When formally tested by Pesenti

et al. [20], Gamm had a forward span of 11 digits (controls 7.2,

s.d. ¼ 0.8) and 12 digits backwards (controls 5.8, s.d. ¼ 0.8),

whereas his letter span was in the normal range.

Working memory, as characterized by Baddeley and Hitch,

is a more complex construct that includes a Central Executive

that updates information to make it relevant to the current

task [21,22]. Most studies that have looked at both span and

updating have found that it is the updating function that is

most closely linked with arithmetical ability. One study

found that high and low achievers who did not differ on for-

ward digit span did differ on backward digit span, an index

of the efficiency of the Central Executive component of work-

ing memory because the item order needs to be updated [23].

Again, there is evidence for domain specificity in working

memory: we devised a novel updating task in order to see

whether the low attainers were worse at updating numerical

material only (domain-specific) or on non-numerical material

(domain-general). Participants were asked to recall the smal-

lest item in a spoken list. The list could consist of numbers,

e.g. ‘26–68–92–66–35’ or animal names, e.g. ‘giraffe–

pelican–tortoise–tiger–chicken–dolphin’. This experimental

design could be manipulated so as to increase the number of

items to be recalled (load)—that is, the smallest item, or the

two, or the three smallest items—and also the number of

items to be inhibited (inhibition). Overall, the low-attaining

group did better on the animal task, while the typically attain-

ing group did better on the number task. Neither load nor

inhibition distinguished the two groups, except in one specific

way: when more items had to be inhibited, this had a greater

effect on animal recall than number recall in the typical

group, while it had a greater impact on number recall than

animal recall in the low-attaining group. This suggests that

working memory could be at least partially domain-specific

[24]. It also supported the hypothesis that it was not the ability

to hold information—as measured by span—but rather to

modify it in light of current task demands that was important.

The official reports neglect the possibility that, along with

domain-general cognitive tools needed for learning anything,

there is a domain-specific tool in the starter kit for learning to

become numerate. The cultural environment provides (or

sometimes fails to provide) symbolic resources to make

numeracy more efficient: counting words, numerals, body-

part representations and other external representations, such

as tally ticks and marks on bones and stones (see the paper

by d’Errico et al. in this issue [25]) [26]. It will turn out that

even for learning to understand these symbolic resources

both domain-specific and domain-general tools are needed.

I call this domain-specific tool the numerosity tool. In typical

learners, the numerosity tool, I will argue, supports the normal

development of arithmetical competence. (I have called it the

https://www.nationalnumeracy.org.uk
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‘number module’ elsewhere [26].) When this tool is inefficient,

normal development is seriously handicapped. I will review

some of the studies we have carried out to test this idea. To

make this case, I organize the evidence along the lines pro-

posed by Morton & Frith [27] in their ‘causal modelling’

framework, to show domain-specific individual differences

in behaviour, in cognition, in the brain and in genetics.
 blishing.org
Phil.Trans.R.Soc.B

373:20170118
2. The behavioural level: selective disabilities in
arithmetic

I start by describing briefly the survey evidence for individ-

ual differences in arithmetical competence, and then go on

to show experimental evidence of selective disabilities in

arithmetical competence.

A large-scale longitudinal UK survey of numeracy, based

on a representative sample of about ten thousand people,

found that around 20% of 20- and 34-year-old adults tested

are at ‘entry level 2’—the level expected of 9-year-olds [28],

and of these only about a quarter report having difficulties

with numbers or arithmetic [29].

The UK cohort study showed that although 14% of indi-

viduals have both numeracy and literacy difficulties (below

Entry Level 2), 11% have poor numeracy alone. This suggests

that numeracy problems can be selective. Indeed, we have

found that many high-functioning individuals have selective

deficits in their numerical abilities. Here are some examples

of their self-reports.

† Paul Moorcraft, defence correspondent, novelist,

– ‘[Maths] was like being asked to speak in an unknown

foreign language’.

† Emma King, cosmologist

– ‘I can’t add up, subtract or multiply in my head . . . I

calculate 4 þ 3 by counting’.

† Vivienne Parry, broadcaster, science journalist

– ‘I was in the top set for all other subjects . . . No matter

how hard I tried or how much homework I did, I just

didn’t get it’.

† Articulate 8-year-old, good at all other school subjects,

expert on dinosaurs, but ‘the only subject I don’t like is

maths’

– Teacher: What do you need to add to 8 to make 30?
– Child: Two (Even with the help of Cuisenaire rods and a

UTH board, he fails to work it out.)

† BD, a 23-year-old reading English at an Ivy League

university

– Experimenter: Can you please tell me the result of nine times
four?

– BD: Yes, well, looks difficult. Now, I am very uncertain
between fifty-two and forty-five. . . I really cannot decide: it
could be the first but could be the second as well.

– Experimenter: Make a guess then.

– BD: Okay. . . uhm. . . I’ll say forty-seven.

– Experimenter: Good, I’ll write down forty-seven. But you
can still change your answer, if you want. For example, how
about changing it with thirty-six?

– BD: Bah, no. . . it does not seem a better guess than forty-
seven, does it? I’ll keep forty-seven.

(recorded interview by Rusconi, Losiewicz & Butterworth,

cited in [30], pp. 67–68)
When adults with severe numerical disabilities of this

kind are formally tested on a variety of cognitive tasks

including non-numerical quantitative tasks, many show a

deficit on specifically numerical tasks. In one study [31],

severe numerical disability in the presence of normal or

superior IQ (WAIS-R) was diagnosed on three criteria.

1. Below cut-off on standardized arithmetical tests: the

Graded Difficulty Arithmetic Test [32] and the arithmetic

subtest of WAIS-R [33].

2. Numerosity discrimination was significantly worse than

controls; [34].

3. Met the criteria for dyscalculia on the capacity and

attainment subscales of the dyscalculia screener [35].

These participants and matched controls were tested on

two tasks of continuous quantity: one required discriminating

the duration of two stimuli and the other required the discrimi-

nation of two line lengths. The numerical tasks required

selecting the larger of two numbers; comparing a number

with an array of dots; and verifying a simple calculation

(figure 1). (We will see below in §4 the neuroimaging results

from this task). The study in figure 1 is experimental evidence

of a disability specific to numerical tasks and not tasks invol-

ving continuous quantity. Therefore, it is important to

distinguish numerical abilities from quantitative abilities in

general, which may or may not include numerical abilities.

The criteria listed above constitute a behavioural way of

identifying a disability usually called ‘developmental dyscal-

culia’ (and sometimes, ‘mathematical learning disability’).

However, as we will see in the next section, the critical

characterization of this condition is cognitive: a core deficit

in the efficiency of the numerosity tool.
3. The cognitive level: a domain-specific tool in
the starter kit for arithmetic

A selective deficit in numerical abilities, when the learner has

good cognitive capacities and access to a normal education,

suggests that there is another ingredient in the arithmetical

starter kit that could be functioning inefficiently.

Talks at the Royal Society meeting The Origins of

Numerical Abilities, and represented in this volume, show

that many other species possess numerical capacities, and

not just those with big brains, such as monkeys (1–4 billion

neurons) but also creatures with small brains, such as bees

(approx. 1 m [36]), fish (approx. 10 m [37]) and anurans

(approx. 12 million neurons). It is possible, and perhaps

likely, that they share the same mechanism deployed to

extract numerosity information from the environment as

humans, albeit within distinct evolutionary and neural

contexts.

If there is a number tool starter kit, what form might it

take? One proposal about the nature of the mechanism that

has been used to explain both human and non-human

numerical abilities is the linear accumulator. For a recent math-

ematical account of a linear accumulator, see [38].

The linear accumulator has several attractive features as a

key tool in the starter kit, along with the domain-general tools

mentioned above. First, the mechanism is inherited, with the

gate and storage mechanisms evolved to fit the objects of

http://rstb.royalsocietypublishing.org/
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Figure 1. (a) Tests of numerical ability. (b) Test of abilities to discriminate
continuous quantities, where one condition requires deciding whether the
duration of the test is longer than the reference; in the other, whether
the size of the test stimulus is longer than the reference. (c) The normalized
results in standard deviation units. Adults with severe numerical disabilities
(DD) were significantly worse than controls only on the number tasks. From
Cappelletti et al. [31].
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Figure 2. (a) A sketch of a neural accumulator mechanism: the brain con-
tains a ‘pacemaker’ that generates quanta of energy and a ‘gate’ that lets
through a quantum for each object to be enumerated. The quanta are
stored in the ‘storage’ linearly proportional to the number of objects enum-
erated. Adapted from Gibbon et al. [40] and Meck & Church [41]. (b) Tally
counter. (Online version in colour.)
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interest for that species, so it does not need to be learned. Of

course, other processes will need to be learned: for example,

how the accumulator ‘level’ is linked to counting words [39]

in a way that maintains the link between numerosity (cardin-

ality) and order (ordinality). Second, it can be a very simple

device like the tally counter in figure 2, which can be used

to count the number of sheep but not goats in a field. The

counting just depends on a button press; the more compli-

cated cognitive process is deciding what is a sheep when

they are all moving about and there are both young and

old of each species. This will require knowledge of the

species’ characteristics, among other cognitive capacities.

Third, being a linear accumulator, arithmetical operations

are carried out in a natural way, whereas addition and sub-

traction would be difficult in a logarithmic accumulator

[39]. Fourth, there is evidence that single neurons can

implement an accumulator [42], which could explain why

even animals with very small brains can carry out the

simple numerical processes that would be supported by an

accumulator. See §4 below for more on neural processes. By

contrast, evidence collected so far suggests that other animals

are much more limited in the presentation and modality of

objects they can enumerate. For instance, some species of

ants can count their own steps in order to estimate distance

from their nest [43], but it is not clear whether they can
count anything else. Bees can count landmarks, and also

small arrays of objects, but again this seems to be the limit

of the counting ability (see [44] for a review).

It should be noted that computational models of numeri-

cal cognition include an accumulator stage (sometimes called

a ‘summation’ stage) in which inputs are normalized so that

each item to be enumerated is represented in the same way—

Difference of Gaussians filters in figure 3a, arbitrary units in

3b and 3c [45–48].

Now, if the accumulator is the key numerosity tool in the

starter kit for acquiring arithmetical competence, then indi-

vidual differences in its efficiency will be linked to

measures of arithmetical performance. No test will be a

pure measure of the efficiency of the accumulator. Consider

a test that compares the numerosities of two sets, such as

those in figure 4a–c. In these cases, the total number of

objects in the sets may induce different mechanisms: an atten-

tion-demanding enumeration for numerosities up to 4

[52,53], perhaps a sequential enumeration process if accuracy

is a task demand from 4 to 8 or 9 [54] and a statistical extrac-

tion process for larger numerosities that does not depend on a

linear accumulator [55]. On top of that, there will be a

decision process that will also contribute to the test outcome

(figure 3).

Another method commonly used for measuring individ-

ual differences in the efficiency of the numerosity tool is a

dot enumeration (DE) task (see figure 5). Here, the participant

simply names the number of objects in the array. Again the

same questions about the enumeration processes can be

asked, and, in addition, there is the issue of knowing, under-

standing and producing the name of the numerosity, or

selecting the digit symbol for it. (One method that has been

used extensively in animal studies, classically by Otto Koeh-

ler with corvids [57], but, as far as I know, never with

humans, is a match-to-sample task. This task has the advan-

tage of requiring the identification of a particular numerosity

but without the requirement of knowing the meaning of

number words or of numerals. The closest approximation

to it is a study of Australian Aboriginal children, whose

languages contained no counting words, and whose culture

had no counting practices. The children were required to con-

struct from memory the numerosity of a sample array and

could not therefore rely on remembering a symbol standing

for the numerosity [58].)

Despite these issues, these relatively simple metrics corre-

late quite well with arithmetical competence, suggesting a

role for the numerosity tool in the development of arithmetic.

Thus, Halberda et al. found a significant association between

a numerosity comparison task (figure 4a) in the ninth grade

http://rstb.royalsocietypublishing.org/
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and a standard arithmetic test in kindergarten, with associ-

ation becoming stronger for older children (R2s between

0.127 and 0.326 depending largely on age) [34]. Piazza et al.
similarly found a weaker correlation between numerosity

comparison (figure 4b) and some but not all measures of

arithmetical ability [50]. In a recent meta-analysis of 41

studies, an average correlation between these measures and

measures of mathematical competence was r ¼ 0.241 but

with only a weak effect of age, and several studies found

no correlation [59].

Stronger evidence for the role of a numerosity tool in arith-

metical development is a longitudinal study of 159 children by

Reeve et al. [56] that measured efficiency in kindergarten (ages

5–6 years) and at four other ages using timed DE, and rather

than using arbitrary criteria to assign learners to groups, a clus-

ter analytic approach was adopted. Children were retested on

DE at 7, 8.5, 9 and 11 years, and there was a significant ordinal

correlation among clusters: that is, children tended to stay in

the same cluster—fast, medium or slow—throughout the test-

ing period. Cluster membership in kindergarten predicted

age-appropriate arithmetical competence at several sub-

sequent ages to 10 years, and key to our hypothesis is that

membership of the slow cluster (7% of the sample) were
always worse on age-appropriate arithmetic tests than the

other two clusters.

Low efficiency in kindergarten is thus a good predictor of

children who will have trouble with learning arithmetic in

school.

Cluster membership was not significantly associated with

measures of domain-general capacities: the simple reaction

time (RT) measure at any age, even though DE efficiency is

an RT measure (median F value ¼ 2.14, p . 0.1). Nor was it

associated with a measure of non-verbal intelligence

(Raven’s coloured progressive matrices [60]) (F2,156 ¼ 0.61,

n.s.). Nor, indeed, was it associated with the ability to

access symbols, as measured by naming digits (F2,156 ¼

0.66, n.s.) or naming letters (F2,156 ¼ 0.15, n.s.).

These findings support the hypothesis that an efficient

domain-specific tool is needed for the typical development

of arithmetic.

These results are consistent with the first study we carried

out on dyscalculic 9-year-olds who had severe difficulties in

accuracy and speed in timed arithmetic (3 s.d. below the

sample mean) [61]. In fact, it was easy to match the dyscalcu-

lic children to controls in the same classrooms on tests of

general cognitive ability (Raven’s coloured progressive

matrices [60]), plus WISC III Mazes subtest, and on forward

and backward digit span [62], suggesting that dyscalculia is

not a result of poor general cognitive capacity.

If an efficient numerosity tool is necessary for normal arith-

metical development, is an inefficient tool sufficient for

disabilities in arithmetical development? Evidence for this

comes from a study of one district of Havana, Cuba—Havana

Centro. It started with a sample of 11 562 children aged from

6.4–17.3 years—effectively every child in this district, all of

whom underwent a curriculum-based group-administered

standardized test each school year—see ‘MAT’ in figure 6,

which also summarizes the sampling method and results [63].

Of these, 1966 were tested individually using a specially

designed computerized ‘basic numerical battery’ (BNB)

comprising

— Item-timed arithmetic (log EM)—the measure of arithme-

tical competence.

— Item-timed dot enumeration (log EM)—the measure of

numerical capacity.

— Basic reaction time.

The BNB used an efficiency measure that combined accu-

racy and speed (median RT adjusted for basic RT/accuracy)

to give LogEM.1

Of the 1966 tested, 9.4% were classified as Arithmetic
Dysfluent (AD), meaning that they were 2 s.d. worse on

timed arithmetic; 4.5% were classified as having a Core Deficit
based on their performance on DE; and 3.4% were classified

as Developmental Dyscalculic (DD) if they were both AD and

had a core deficit.

Is a core deficit sufficient for AD? In terms of the sensitivity
of the core-deficit test, the true-positive rate is 27%; that is,

there are many causes of AD besides the core deficit. In

terms of specificity (true negative (1570)/true negative þ
false positive (35)), the true-negative rate is 98%, positive pre-

dictive value 74% and negative predictive value 86%. That is,

having a core deficit makes it almost certain that a child will

have difficulty in being normally fluent in arithmetic. Inci-

dentally, the standardized school test, MAT, is actually a

http://rstb.royalsocietypublishing.org/
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bad predictor of which child is going to have trouble and

which is not (specificity 45%).
4. The neural level: neural basis of the ‘core
deficit’

This section will present evidence from studies of brain struc-

ture and function that reveals a specific network for

numerical processes, and also reveals how this is abnormal

in dyscalculics.

An accumulator mechanism (figure 2) can be very

simple—analogous to a tally counter—and may need very

few neurons to implement. In fact, there is some evidence

for single neurons performing this task in monkey lateral

intraparietal sulcus [42]. Even if the counter is neurally

simple, identifying the objects to be counted may not be.

Big brains are needed to decide what is an object to be

enumerated, as in the sheep and goats example above.

Moreover, humans are flexible and can enumerate any set

of denumerable objects, whether they are presented simul-

taneously or sequentially, in any modality and by a

common neural mechanism ([64,65]; see also [66–68]).

There is now very extensive evidence that numerical tasks

are supported by a specific brain network involving the left

and right intraparietal sulci (IPS), with the left IPS more

strongly linked to the frontal lobes (see meta-analyses of

the neuroimaging evidence in [69–71] and reviews of the

neuropsychological evidence in [26,72,73]).

Now these studies did not always distinguish between

general quantification and specific numerosity processing.

One study set out to distinguish numerosity that is discrete

from continuous quantity in non-symbolic tasks (figure 7),

and more specifically tested the idea that there was a

common neural mechanism for enumerating collections of

objects presented simultaneously and those presented

sequentially [64].
First, we asked whether collections of discrete objects acti-

vated distinct neural regions when compared with equivalent

continuous quantities. This they did, notably in the occipital

cortex, but this is scarcely surprising because the visual

stimuli are different. However, they also activated the parietal

lobes distinctively: there was a small common region in both

left and right IPS that was activated in both simultaneous and

sequential presentations and, moreover, the amount of acti-

vation was parametrically modulated by the ratio of the

two collections being compared.

Thus, for example, these regions were more activated by

comparing 11 blue to 9 green than by comparing 14 blue to

6 green (as in figure 7). In this respect, the IPS activations

were different from the occipital activations, which were

not modulated by the ratio between collections, thus showing

that although visual regions were sensitive to the differences

between continuous and discrete stimuli, they were not sen-

sitive to their numerical properties. The IPS activations

were not only sensitive to these differences but also to their

numerical properties. This is another reason why behavioural

tests using dots in comparison, enumeration or matching to

the sample are so important.

In the study by Cappelletti et al. [31], as described above

in §2, the brain region most strongly correlated with and

specific to the number tasks was the right intraparietal

sulcus, while the region activated by both number and con-

tinuous quantity tasks was the right temporo-parietal

junction (figure 8). This again supports the contention that

the processing of numerosities is distinct from the processing

of continuous quantities.

In children in the range 7–8 years, grey matter volume

correlates positively with performance on a standardized

test of arithmetic [74]. There is evidence that the grey

matter volume of the IPS is lower in individuals with selec-

tive disabilities in numerical tasks. This was first

demonstrated in adolescents with otherwise normal cognitive

functioning when compared with matched controls [75]. This
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study revealed reduced grey matter in the left IPS in adoles-

cents with very low scores on a standardized test of simple

arithmetic [75]. There is also some evidence that grey

matter volume in relevant regions increases in typically devel-

oping 8- to 14-year-olds, but does not increase or even

decreases in some dyscalculics [76], suggesting that dyscalcu-

lic brains are not just different but develop on a different

trajectory.

Twelve-year-old children show abnormal and reduced
activation in the right IPS during a magnitude comparison

task similar to the one in figure 4c [77]. By contrast, a

recent study of 7- to 9-year-olds carrying out single-digit

addition verification (e.g. 4 þ 3 ¼ 8?) found overactivation in

several cortical areas including the bilateral IPS, but also in

the prefrontal cortex [78]. The authors of this study note

that ‘The profile of differences in brain activation is currently

an unresolved issue, as previous research has reported both

over and under activation in MLD [mathematical learning

disabilities], relative to control groups. This lack of consensus
is likely due to the limited number of studies, the use of

different cutoff criteria for identifying MLD groups . . . as

well as the use of wide age ranges, and diverse experimental

tasks and control conditions.’ (p. 2).

One possible explanation of the apparent conflict between

these studies is that increased arithmetical proficiency

requires lower levels of activation during calculation [79].

Now, the rate of development of proficiency in calculation

will be slower in low attainers than typical attainers, thus

low attainers may show higher activation than their age-

matched controls precisely because they are less proficient.

By contrast, a study by Price et al. [77] of older children

does not involve calculation proficiency but rather taps the

core system of numerosity processing. However, it is not

clear whether the developmental trajectory of this task differs

between the dyscalculics and the typical developers.

Differences in the way the arithmetic network is con-

nected have also been found in children with low

numeracy. For example, a study of 7- to 9-year-olds found
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that those with ‘mathematical disabilities’ (below 90 on the

WIAT-II Numerical Operations subtest [13]), compared

with controls, showed hyper-connectivity of the IPS with a

‘bilateral fronto-parietal network’, that is, the network

known to be active when carrying out numerical tasks [80].

In fact, the resting state functional connectivity in links

between regions known to be involved in calculation was

negatively correlated with numerical operations. Now these

children are not dyscalculic by the criteria I have been advo-

cating. Indeed, some of them could be classified as normal,

that is, within 1 s.d. of the population mean. It is not clear

why the fronto-parietal network should be more connected

than controls, except perhaps that lower calculation profi-

ciency means that not only the relevant regions, but also

the connections between them, are more active.

On the other hand, a study of 12 dyscalculics between 8

and 14 years relative to matched controls showed an age

trend of decreased white matter volume, a structural correlate

of connectivity, on some relevant tracts where the controls

showed increasing white matter volume [76]. This suggests

a contrasting hypothesis that one cause—or perhaps one con-

sequence—of dyscalculia is a relative failure to link up the

relevant brain regions adequately. (See [81] for a cognitive

account of atypical links between numerosity processing

(IPS) and number symbols (frontal) in dyscalculia.)
5. Genetics of the core deficit
A key question in mathematical cognition is to determine the

extent to which mathematical abilities and disabilities are

shaped by an individual’s genetic endowment. That is, is

there a genetic reason why some people are bad at maths

and other people are not? Of course, there will be many

reasons for individual differences, including experience

with mathematics, and to establish whether there is a genetic
reason, other possible reasons need to be factored out. In

particular, is there a genetic basis for the core deficit?

There are two alternative genetic hypotheses.

(1) Numerical abilities are part of our general cognitive

endowment, and are closely linked to the inheritance of

other cognitive abilities. Therefore, there should be no

genetic influences specific to numeracy.

(2) Numerical abilities are based on a specific genetic

endowment.

There are grounds for the first hypothesis: first, that

measures of mathematical abilities are correlated with

measures of general intelligence; second, that measures of

mathematical ability are correlated with performance on

core school skills, such as reading. It has been argued that

most, if not all, cognitive functions involve ‘generalist

genes’. ‘In the “generalist genes” hypothesis, it is suggested

that the same genes affect most cognitive abilities and disabil-

ities. This recently proposed hypothesis is based on

considerable multivariate genetic research showing that

there is substantial genetic overlap between such broad

areas of cognition as language, reading, mathematics and

general cognitive ability’ [82, p. 198].

At the same time, there are grounds for preferring the

second hypothesis. First because some 30% of the genetic

variation in a large twin sample of 7-year-olds is specific to

mathematics performance in school [83]; see below. Second,

there is the specificity of the neural substrate for core arithme-

tical abilities, and the selectivity of dyscalculia, as we have

shown. We have noted that individuals from widely different

cultures—from trading and non-trading cultures, and even

from cultures with no counting practices and no counting

words—nevertheless possessed a capacity for making

decisions on the basis of numerical information [58].

We should also note that infants, even in the first week of

life, before they had much opportunity to learn about numer-

osities, could make discriminations on the basis of the

numerosity of visual displays [84,85], and that at six

months they responded more abstractly, to the correlation

of the numerosity of a visual and an auditory display [86].

At this age, they can also carry out very simple addition

and subtraction [87]. This suggests that the bases of these

capacities is not induced by education or culture but is innate.
(a) Gender
One important genetic factor is gender. Males and females

differ systematically, of course, on their sex chromosomes;

typically, females have two similar X chromosomes (XX)

and males have an X and a much smaller Y (XY). This differ-

ence in the sex chromosomes has many consequences, not

least differences in hormones.

Detailed and extensive studies of gender differences in

the USA suggest that there is no significant gender differ-

ences for numbers and arithmetic [88], and the same

factors—genetic, shared and non-shared environments—

affect both males and females in the same way in both typical

and low attainers [89]. For a numerosity discrimination task

(figure 4a), where one would expect very little environmental

effect, again, there appears to be no difference in the mean

accuracy or variance between boys and girls, and again the

same factors affect both [90].
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By contrast, our study of 11 562 children in Havana found

that the core deficit as measured by DE had a male : female

ratio of 2.4 : 1 [63]. Consistent with this, a longitudinal

study of primary school children showed that boys were

much more likely than girls to have a deficit on the

‘Number Sets’ task, which involves digits and small sets of

objects, and probably taps the core capacity in a similar

way to DE [23].

On the other hand, no gender differences were found in a

large sample of 16-year-olds when tested on numerosity com-

parisons similar to figure 4a [90], which suggests that this

task is less influenced by genetics than DE.

It is not clear why some studies find sex differences, and

others do not.
(b) Twin studies
The first study to use twins to estimate the heritability of

numerical abilities and disabilities was carried out by a

team at the Colorado Learning Disabilities Research Center

led by John de Fries and Bruce Pennington, pioneers in this

kind of work. Taking twin probands as being 1.5 s.d. below

the mean on a standardized arithmetic and comparing

them with MZ and DZ co-twins, they found a significant

groupwise (h2g) heritability of about 38%, controlling for

verbal, performance and full-scale IQ [91].

The most extensive twin study comprised a sample of

1500 pairs of MZ twins and 1375 pairs of DZ 7-year-old

twins [83,92]. Their mathematical ability was based on the

teacher’s assessment in relation to National Curriculum Key
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Stage 1. Teachers used a 5-point scale based on the teacher’s

knowledge of the child’s mathematics achievement over the

academic year on three aspects of mathematical ability:

using and applying mathematics; numbers; and shapes,

space and measures. Reading and general cognitive abilities

were tested using standardized test batteries. They found a

significant proportion of the genetic variance—about 30%—

was specific to mathematics.

A second investigation by Kovas and her team used a

Web-based battery of tests of maths and reading on 2596

pairs of 10-year-old twins from the Twins Early Development

Study [93]. Here, as with Alarcón et al. [91], they selected a

subsample of children who were particularly bad at maths

(the lowest 15%). This required a different method of statisti-

cal analysis (DeFries–Fulker Extremes Analysis, h2g) [93].

They concluded that ‘Both reading and mathematics disabil-

ity are moderately heritable (47% and 43%, respectively) and

show only modest shared environmental influence (16% and

20%) . . . [but there was a] genetic correlation of 0.67 between

reading disability and mathematics disability, suggesting that

they are affected largely by the same genetic factors.’ (p. 914).

When the 4000 twin pairs from the Twins Early Develop-

ment Study reached the age of 12, a further investigation was

carried out, again looking at the lowest 15% in reading and

maths, along with tests of language and general cognitive

ability (IQ). Again, there was a significant genetic influence

on maths disability, as well as on reading, language and

IQ [94].

Now, these are studies of poor numeracy in general and

not of the core deficit specifically. To explore this, the team

carried out a more recent study specifically of the heritability

of ‘number sense’. Kovas and co-workers [90] tested 4518

twins (2259 pairs): 836 monozygotic (MZ), 733 dizygotic

same-sex (DZ) and 689 dizygotic opposite-sex (DZ) pairs

(sic), with a mean age of 16.6 years, drawn from the Twins
Early Development Study. The number sense test they used

was the same as the one reproduced in figure 4a above. The

study found that number sense was ‘modestly heritable

(32%), with individual differences being largely explained

by non-shared environmental influences (68%) and no

contribution from shared environmental factors.’ ([85], p. 35).

In our study of 160 twins with a mean age of 12 years, we

found that the efficiency of DE (median RT/accuracy) was

modestly heritable (h2 ¼ 0.47). We also found that grey

matter density in the left IPS was modestly heritable (h2 ¼

0.28), but perhaps what was most interesting for the core-def-

icit hypothesis was the heritability of the link between the

efficiency of DE and the efficiency of simple arithmetic, for

which our bivariate genetic analysis revealed a respectable

heritability of 0.54 [95].

It is fair to say that the genes responsible for the inheri-

tance of mathematical ability and of the efficiency of the

core capacity have not yet been established. Candidate gene

variations have been found to account for tiny effects in

mathematics [96], or have failed to replicate [97]. None so

far have been found that are specific to core capacity.

In figure 9, I try to summarize the findings presented

above. At the behavioural level, there are selective disabilities

in numerical abilities that cannot be explained in terms of

environmental or domain-general cognitive factors. At the

cognitive level, I have proposed a specific mechanism—an

accumulator—a numerosity tool that is part of the starter

kit for learning arithmetic. I have called this the ‘core

capacity’ and I have argued that easily measured inefficien-

cies in this mechanism, a ‘core deficit’, are one important

cause of low numeracy. At the neural level, this core capacity

is located in the IPS of the human brain, and in cases of dys-

calculia, both the structure and functioning of this

mechanism are abnormal and result in a ‘core deficit’.

Although there is clear evidence for the inheritance of specific
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numerical abilities from twin and gender studies, so far only

one study has explored the genetic link between the core

capacity and arithmetical competence. There is still no clear

evidence for the genes that could be involved.
6. Educational implications
It is widely attested, and indeed widely understood, that

many learners fail to attain the minimum level of competence

needed in a numerate society, defined by PISA, for example,

as ‘Level 2’. As I described in §2, PISA results corroborate the

findings from national studies. I will show that low numeracy

is important not only for the life chances of individuals but

also for society as a whole.

(a) Implications for individual learners
The implications for individual life chances of a large British

1970 cohort are summarized as in the report Does Numeracy
Matter More?:
An earlier study, ‘Does Numeracy Matter?’ . . . showed that
people with poor numeracy tended to leave full-time education
at the earliest opportunity and usually without qualifications, fol-
lowed by patchy employment with periods of casual work and
unemployment. Most of their jobs were low skilled and poorly
paid and offered few chances of training or promotion. . . . Over-
all, poor numeracy rather than poor literacy was associated with
low economic well-being. [28, pp. 4–6]
Participants with low numeracy irrespective of their literacy

also had less chance of being in a company pension scheme;

were more at risk of depression; and were more likely to have

been suspended from school, or arrested and cautioned by

the police. So yes, low numeracy does matter for individuals.

Low numeracy in school can be very distressing and can

cause problems in the classroom. We asked 9-year-olds about

their experiences with the daily numeracy hour. Instead of
one-on-one interviews, we arranged the children into five-

person focus groups defined by their arithmetic attainment

level and led by my colleague, Anna Bevan. We recorded the

sessions and made verbatim transcriptions from recordings [99]

— Low attainer: ‘When I don’t know something, I wish that I

was like a clever person and I blame it on myself’.

— Low attainer: ‘I would cry and I wish I was at home with

my mum and it would be—I won’t have to do any maths’.

— High attainer about low attainers: ‘They waste their time

crying’.

— High attainer about low attainer: ‘She’s like—she’s like all

upset and miserable, and she don’t like being teased’.

— High attainer about low attainer: ‘She goes hide in the

corner—nobody knows where she is and she’s crying

there’.

These learners are a problem also for the teachers. In this

case, teachers were interviewed individually by Bevan.

— Teacher KD: ‘If they forget really basic things from the

beginning, then there’s no way you can use those further

down the line . . . because they can’t even do the basics’.

Teachers are generally aware that children who were strug-

gling often try to hide the fact:

— Teacher JL: ‘. . .lots of times they’re trying to cover it up . . .

sometimes they’ll cover it up—they’d rather be told off for

being naughty than being told off that they’re thick’.

As noted in §1, there are many reasons for very low

numeracy, but the results reported in the previous sections

imply that a proportion of the low numerates suffer a core def-
icit in a mechanism for identifying and representing

numerosities, and that this mechanism is a key tool in the

starter kit for learning arithmetic.
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A large and authoritative UK Government Office of

Science report, Mental Capital and Wellbeing in 2008, one of

the few official reports to recognize dyscalculia, summarized

the situation thus: ‘Developmental dyscalculia is currently

the poor relation of dyslexia, with a much lower public pro-

file. But the consequences of dyscalculia are at least as

severe as those for dyslexia’ [100, p. 1060]. It notes that dyscal-

culia can reduce lifetime earnings by £114 000 and reduce the

probability of achieving five or more GCSEs (A*–C) by 7–20

percentage points, both of which are significantly worse than

the impact of dyslexia [100,101].

(b) Implications for society
The prevalence of this condition—which is usually termed

‘developmental dyscalculia’—has been estimated as some-

where between 3.5% [63] and 7% [102]. Putting these

estimates into context, this means that in the UK there are

between 2.1 and 4.2 million sufferers, and in the USA,

between 10 and 20 million sufferers. (Bear in mind that

these are studies of school children and are not strictly com-

parable with the cohort studies of adults, and it is possible

that there are cumulative effects of low attainment at

school. Low maths attainment at school typically leads to ear-

lier school leaving [28] and probably to an even greater

competence gap at adulthood with more competent peers.)

I have argued that a significant proportion of all learners

who have fallen behind their peers will have a core deficit.

The estimate in our Havana study was that about one-third
of those with ‘arithmetic dysfluency’—essentially, those

9% of children who are slow or inaccurate on timed arith-

metic—have a core deficit and are dyscalculic [63]. Geary

et al. estimate that learners with ‘mathematical learning dis-

ability’—a broader category than our AD—who have a core

deficit as measured by their ‘number sets’ task, represent

about 10% of all the ‘low achievers’ [23]. As mentioned in

§1, dyscalculics represent a small but significant proportion

of all learners who are regarded as having low numeracy,

and not just those characterized as dysfluent in the

Havana study. Using the PISA criterion reference, this

amounts to 23% in OECD countries, so those with dyscalcu-

lia constitute one-third to one-fifth of these low numerates.

One implication for society is the cost of dyscalculia. The

accountancy firm, KPMG, estimated the cost to the UK of the

lowest 6%, in terms of lost direct and indirect taxes, unem-

ployment benefits, justice costs because they are more likely

to be in trouble with the law, medical costs because they

are more likely to have physical or mental problems, and

additional educational costs, was £2.4 billion per year [103].

The additional educational cost was calculated at £235.2

million, one-tenth of the total cost. These costs are specified

in table 1.

(c) Policy
One cannot help think that the total cost to society would be

lower if more were spent on educational help for the lowest-

attaining, especially the dyscalculics. Research into the best

way of identifying and helping dyscalculics will require fund-

ing levels at least comparable with the funding for dyslexia

research. However, NIH funding in 2009 in the USA for

research into dyscalculia was 6% of that for dyslexia, and a

similar proportion of publications [104]. Comparable figures

for the UK and other countries do not yet exist.
The fact that neuroscience has identified a target deficit

does not entail how this deficit should best be ameliorated,

any more than the identification of a disease target entails

the precise nature of a drug or how it should be administered.

Now, what should these appropriate educational inter-

ventions be? There are well-established practices for helping

dyslexic learners to read and spell, but there is nothing com-

parable for dyscalculics. There are two critical features of

literacy interventions for dyslexia: multisensory methods

and personalized learning plans. Special needs teachers

who specialize in helping dyscalculic learners in the UK

describe their own multisensory methods and their focus

on designing interventions for each individual learner

[105–107]. However, these methods have not been subject

to systematic evaluation.

In fact, the present UK government and its immediate

Conservative predecessors do not officially recognize dys-

calculia. The previous references have been removed, and

now the only reference on the Department for Education

website is to the Driver and Vehicle Licensing Agency,

where it is stated that dyscalculia does not prevent someone

from getting a driving licence. There is also a link to the

Department for Work and Pensions about discrimination

in employment.

The UK DFEE (Department of Education and Employ-

ment) in Numeracy Matters stressed that in initial teacher

training, teachers ‘need to have sufficient knowledge and

skills to teach numeracy well to primary pupils’ (para 73,

[6]). However, although the report drew attention to chil-

dren’s special educational needs, and the fact that children

with numeracy problems should have an Individual Edu-

cation Plan, it said nothing about dyscalculia or any

equivalent formulation of specific numeracy disabilities. In

fact, there are still very few courses to teach teachers about

dyscalculia. We set up the first one in the London Borough

of Harrow in 2003 funded by a local charity, the John Lyon

Trust, which ran for a year. In a survey by the British Dyslexia

Association’s Dyscalulia Committee in 2015, only two univer-

sities were identified that had courses targeted at dyscalculia

(www.bdadyslexia.org.uk/dyslexic/dyscalculia). It is of

course important to have expert assessment and guidance

for learners with dyscalculia and other types of severe

http://www.bdadyslexia.org.uk/dyslexic/dyscalculia
http://rstb.royalsocietypublishing.org/
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Figure 10. Sketch of an iterative research programme. The intervention is
designed to modify the core cognitive deficit in numerosity processing ident-
ified by individual differences in behaviour, and in neural markers, where
tested. If the intervention is effective, then there will be changes in
neural structure or functioning, as well as in numerical behaviour, where
both are important measures of the effectiveness of the intervention in ame-
liorating the core deficit. This programme is iterative, with feedback from
changes in brain and behaviour modifying the design of the intervention
(not shown with arrows). (Online version in colour.)
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difficulties with numeracy. However, it is difficult to find any

postgraduate courses in educational psychology or in math-

ematics teaching that provide training in this area.

National Numeracy is a UK charity that wants ‘Everyone in

the UK to have the numeracy that allows them to make the

most of their lives’. The only reference on their website to

dyscalculia is the following: ‘A senior lecturer for the Dys-

lexia Programme at Edge Hill University has shared her

recommendations for the top ten dyscalculia books.’

(https://www.nationalnumeracy.org.uk). National Numer-

acy makes no use of the extensive behavioural, cognitive,

neuropsychological and genetic research on dyscalculia pub-

lished in over three hundred peer-reviewed papers since

2007. In fact, National Numeracy claims that ‘Mathematical

understanding is not determined at birth’, without any recog-

nition of individual differences in the starter kit, especially

with regard to foundational numerosity concepts.

(d) Individualizing learning
The UK government’s report Mental Capital and Wellbeing
(2008) [100] specifically calls for individual education plans

for dyscalculia. Both this report and Numeracy Matters [6]

propose that ICT can provide individualized learning

environments by keeping accurate track of the learner’s cur-

rent competence and rehearsing relevant material. Digital

interventions, the report notes, need more development.

Beyond this, the report has nothing specific to say about

the interventions [100,101]. Meta-analyses of the effectiveness

of different types of intervention for children with ‘special

educational needs’ [108], ‘learning disabilities’ [109] or of

‘fact-based dysfluency’ [110] fail to distinguish the different

types of learning disorder, so they cannot provide a basis

for personalized intervention strategies that is matching the

appropriate intervention for the learner’s particular problem.

In particular, they do not distinguish between dyscalculia

and other causes of low numeracy.

Randomized controlled trials with one digital game,

‘Number Race’, have also been promising with early school

children [111] and preschoolers [112], though these studies

are not specifically targeted at learners with low numeracy

or with dyscalculics. Other games are currently available,

but not yet fully evaluated (e.g. http://www.thenumber-

catcher.com/nc/home.php).

Our own attempts to use adaptive digital technologies

suggest that they provide the opportunity for much more

practice in what Vygotsky has termed the ‘zone of proximal

development’—that is, just beyond the level of current com-

petence—and where the program acts as a tutor, giving

tasks and feedback adapted to their current needs [113,114].

We also try to go beyond merely rehearsing concepts that

are already known, or what Numeracy Matters [6] calls ‘prac-

tice and reinforcement’ (para 54), because the problem for

these learners is to understand the concept in the first

place. Rather, we adopt constructionist pedagogical theory

[115] using a simple microworld [116] to support children
learning the foundational concepts and principles of the

structural properties of numbers, such as the commutativity

of addition and the relationship between addition and sub-

traction. It is not sufficient to learn a list of arithmetical facts.

These activities are targeted specifically at the core deficit

identified in the neuroscience, and the constructionist peda-

gogy gives dyscalculics more of the relevant practice they

need to strengthen the mental representation of numerosities,

the relationship among numerosities, and their relationship

to the familiar words and numerals. This is comparable to

the way that dyslexics benefit from training targeted at

their core deficit in phonological processing [117–120] and

its relationship to letters and words [121]. The research

programme we advocate is summarized in figure 10.

Figure 10 depicts a research programme in educational

neuroscience in which digital interventions targeted at the

core deficit are tested against both behavioural and neural

changes [113,122,123]. Individual differences in response to

intervention would be an important element in the iterative

design process.

This research programme requires that educational auth-

orities, policymakers, parents and sufferers recognize that

poor numeracy can have a very specific cause and will

need very specific help.
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