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1. Introduction
The papers in this theme issue are based on a discussion meeting at Royal Society

in London on 20 and 21 February 2017, and at their Kavli Centre at Chicheley Hall

in Buckinghamshire on the 22 and 23 February. In addition to the scientific pre-

sentations, two distinguished mathematicians, Fields Medallist, Cédric Villani

and Professor of Mathematics at Oxford University, Marcus du Sautoy,

summed up the implications of our new understanding of the origins of numeri-

cal abilities for mathematics and for mathematics education. Audio recordings of

the talks and the subsequent discussions can be accessed at https://royalsociety.

org/science-events-and-lectures/2017/02/numerical-abilities/, https://royalso-

ciety.org/science-events-and-lectures/2017/02/numerical-abilities-future/.

It is clear that humans have a sense of number. This is evident from their

ability to count using counting words, such as one, two, three, . . . and counting

symbols, such as 1, 2, 3, . . . or I, II, III, IV, . . . . In fact, Pagel & Meade [1] argue

that reconstructions of the deep history of cognates from diverse language

families show that counting words are among the longest-surviving words in

all languages. Even when the culture fails to provide words or symbols to

notate counting, humans are still able to enumerate objects in their environ-

ment, as evidence from work with Australian Aboriginal children [2],

suggesting that the symbolic forms, perhaps especially the number words,

arose to denote a pre-existing concept of number.

One of the oldest questions in Western philosophy is what is a number that we

may have a sense of it. Giaquinto [3], in his paper in this issue, notes that Euclid

defined a number as ‘a multitude of units’ where a unit is a single individual

thing. According to this view, ‘any pair of items is a 2 and so there are many

2 s; any trio is a 3 and so there are many 3 s. In general, any plurality of k things

is a k and there are many ks’. Given that there are many twos, the immediate

problem is that we might recognize a brace of pheasants and Big Ben striking

two, but how do we know they are the same number? This kind of epistemological

problem exercised Plato, though he was more concerned with geometrical forms

than numbers.

These accounts are consistent with the widely held view that our numerical

abilities—even the ability to recognize and discriminate particular numerosities

(the number of objects in a set)—depends on the power of human reason to con-

struct numbers in a kind of logical way. This view has been promoted very

influentially by Piaget [4] and by Howard Gardner, for whom one ‘intelligence’

was ‘logico-mathematical’ [5]. Thus, the philosopher and mathematician,

Bertrand Russell wrote in 1919, ‘It must have required many ages to discover

that a brace of pheasants and a couple of days were both instances of the

number 2: the degree of abstraction involved is far from easy’ [6, p. 3].

However, at least 80 years ago carefully controlled experiments with crows

and ravens demonstrated that these creatures, which did not have the advantage

of relevant culture, and perhaps not of the relevant human reasoning capaci-

ties, were nevertheless able to carry out simple numerical tasks successfully

showing that they too had a sense of number [7]. Using a match to sample

paradigm where non-numerical dimensions—such total surface area of the
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objects, total length of edges, etc. were randomly varied—it

was shown that these birds were able to make matches reliably

up to seven items.

This raises the question of how we and other creatures have

a sense of number. Evidence from bones and stones shows that

Homo sapiens had a sense of number, as d’Errico [8] describes

in great detail, tracing the prehistoric development of numeri-

cal notation from incidental notches arising from butchering

animals to systematic and intentional marks not only on

bones but also in other media. Jacobs Danan & Gelman con-

sider how children develop and refine their sense of number,

and make contact with the cultural tools available to them,

in particular, the difficult transition from whole numbers to

fractions and decimals [9].
.R.Soc.B
373:20160507
2. The phylogenetic ubiquity of the number
sense

Half a century ago, the assumption that the ability to perceive

and reason about number was uniquely human was taken

more or less for granted in all of the cognitive sciences,

Koehler’s above-mentioned evidence to the contrary notwith-

standing. Experimental work in the last several decades has

essentially reversed that assumption. There is now a broad con-

sensus that the perception of numerosity and elementary

numerical computation (the application of the ordering oper-

ation, �, for example) to number percepts are found even in

arthropods. The arthropods diverged from the chordata

(hence from the later evolving vertebrata and mammalia) in

the early Cambrian.

The numerical ability of different species will depend on

its adaptive value. In small fish, such as guppies, an indivi-

dual fish is safer from predation when it is in a shoal, and

the larger the shoal the safer it is, other thing being equal.

So being able to assess and compare the number of fish in a

shoal is valuable, as Agrillo & Bisazza [10] demonstrate. In

their review of the experimental evidence, they emphasize the

similarity of these findings to those obtained from mammals,

including humans. They show that when comparing two

numerosities, like comparing other quantities—such as size,

weight, luminance—non-human minds obey Weber’s Law,

which is the oldest and most broadly applicable quantitative

law in experimental psychology. It says that the discriminability

of two quantities—the speed and accuracy with which

the larger of the two can be decided on—depends only on the

ratio of the two objectively specified quantities. Thus, for

example, the speed and accuracy with which a 6 g weight can

be distinguished from a 4 g weight are the same as the speed

and accuracy with which a 6 kg weight can be distinguished

from a 4 kg weight. Similarly, the speed and accuracy with

which a set with numerosity of 6 can be distinguished from a

set with numerosity 4 are the same as the speed and accuracy

with which a numerosity of 60 can be discriminated form a

numerosity of 40. The dependence of discriminability solely

on the objectively measured ratio has two consequences

called the size effect and the distance effect. The size effect

refers to the fact that the discriminability of given numerical

difference depends on the size of the two discriminanda.

Thus, for example, a difference of 2 is easily recognized

when the discriminanda are 4 and 2, but the same difference

is unrecognizable by the non-verbal system for representing

numerosity when the discriminanda are 52 and 50. The distance
effect refers to the fact that the discriminability of two numeros-

ities depends on how widely separated they are. We—and all

other vertebrate species tested—more readily discriminate 10

from five than we discriminate six from five. Both the size

effect and the distance effect are implied by Weber’s Law.

This property of the non-verbal representation leads to its

being called the Approximate Number System. Remarkably,

this Weber’s Law property also governs the reaction times of

human subjects when deciding on the ordering of two

numerals (the written symbols for number) [11,12].

Male frogs, and other anurans, use enumeration for a quite

different purpose, as Rose describes [13]. The number and type

of calls is an advertisement to neighbouring, and (usually

invisible) conspecific females. Because females prefer longer

and more complex calls, males try to include more ‘chucks’

(brief, harmonically rich notes) than their competitors. ‘To

match or ‘1-up’ their competitors, male tungara frogs can

add up to 4–6 chucks to their advertisement calls, thereby

showing evidence of counting to at least this number’.

For a honeybee, it turns out to be useful to count landmarks

to assess distance between a food source it has found and its

hive. It may also useful to count the number of petals on

flower as a way of identifying a good food source, as Skorupski

et al. [14] note. However, whether the bees’ system obeys

Weber’s Law for large numerosities has yet to be proved in

invertebrates, though for non-countable quantity (i.e. continu-

ous rather than discrete quantities) Weber’s Law applies also

to invertebrates.

Many social mammals in the wild, African lions, spotted

hyenas and wolves, assess the number of conspecifics calling

and respond based on numerical advantage, as Benson-

Amram et al. [15] show. One adaptive advantage of doing

this is to decide between fight or flight if outnumbered.

Comparisons of their own group number with that of a com-

peting group broadly follow Weber’s Law.

Nieder [16] shows that both rhesus macaques and corvids

recognize specific numerosities using a match-to-sample para-

digm very similar to the one pioneered by Koehler, with

performance showing Weber-like properties.

Studies of day-old chicks (Gallus gallus) by Rugani [17] and

colleagues show that they can discriminate between different

numbers of objects in Weber-like manner, can solve rudimen-

tary addition and subtraction problem, and use ordinal

information to identify a target element, (e.g. fourth from the

left). This is an elaboration of the well-known imprinting mech-

anism in which the chick follows the first moving object it sees.

Approaching more rather than fewer nest-mates provides

better protection against predation and less heat dissipation.

Numbers are intimately related to space. For example,

human children typically learn to count objects distributed in

space, and the sequence of digits on school walls and in

books is a spatial sequence, usually with the numbers ascend-

ing from left to right. Is this why humans typically show an

advantage in tasks where leftward responses are quicker for

low numbers than high numbers (the spatial-numerical associ-

ation of response codes, or ‘SNARC’ effect [18]? This evidence

has been taken to suggest that we possess a ‘mental number

line’ in our heads, oriented left-to-right. We may ask why

numerate cultures prefer this left to right organization. Vallor-

tigara [19] explores its evolutionary origin in the preference of

chicks for low numerosities to be on the left, and to carry out an

ordinal count (e.g. fourth from the end) more readily if the end

is on the left.

http://rstb.royalsocietypublishing.org/
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3. The neurobiology of numerical abilities
Neuroimaging studies have revealed a network comprising

three main linked cortical regions that are almost invariably

activated in any number task: the parietal lobes bilaterally,

particularly the intraparietal sulcus, and the left frontal

lobe [20–22]. Butterworth [2] reports evidence that the

development of the parietal lobes is markedly atypical in

learners with dyscalculia, a congenital disability in learning

about numbers and arithmetic; moreover, evidence from

twins suggests that in some cases of dyscalculia, the neural

abnormality is inherited. These parietal regions support

more than simple numerical tasks; Amalric & Dehaene [23]

show that they are ‘recycled’ by professional mathematicians

doing advanced mathematical tasks, and that the neural basis

of memory for mathematical material—facts and formulae—

is distinct from language-based memories.

Nevertheless, many studies over the past 100 years have

found that damage to the human left parietal lobe alone results

in impairments in various number tasks [24]. So, what is the

role of the right hemisphere? Semenza & Benavides-Varela

[25] recruit a variety of methodologies to answer this question,

from neurological patients and standard neuroimaging, to

reversible inactivations induced by transcranial magnetic

stimulation and direct current stimulation of the cortex.

They conclude that there is a ‘bilateral orchestration’ of the

left and right hemispheres, with the right, like the left,

having small regions specific to each arithmetical operation,

and perhaps being recruited when the problem to be solved

is difficult.

Homologous regions supporting numerical tasks can

be found in other primates [16]. Now similarities, or even

equivalences, in behaviour across all these species are no

guarantee that the mechanisms that produce them are the

same. We cannot identify a kind of basic body shape or

organ from which they all evolve, as we can for arms, legs

and wings in chordates. It is, nonetheless, well established

that the brain regions that underpin basic numerical pro-

cesses in humans reside in the left and right parietal lobes,

in particular, in the intraparietal sulcus.

It is interesting to note in this regard that neurons

responding to numerosities have been in found in the

nidopallium caudolaterale in the avian brain by Nieder [16].

The relationship, if any, of the nidopallium caudolaterale with

the mammalian brain is, however, uncertain. The dominant

view is that it would be equivalent, though not homologous,

to the mammalian prefrontal cortex. This view is weakened

by the fact that nidopallium differs from the mammalian pre-

frontal cortex in that it seems to lack connections with the

hippocampal formation.

Whether different animals use similar (homologous or

analogous) mechanisms for computing quantities is dis-

cussed in Vallortigara [19], with regard to both geometry

and the mental number line. Overall, one can make a

strong case for homology in encoding geometry in the hippo-

campal formation of vertebrates, from fish to mammals. For

the mental number line, behavioural evidence is suggestive,

but little is known on neural mechanism in these creatures,

or even in the human brain.

By contrast, Rose [13] details a specific mechanism in

neurons in the auditory midbrain in anurans for counting

and calculating the number of sound pulses needed to attract

female conspecifics and deter competing males.
4. Computational theories
Whereas there is broad consensus that animals from many

phyla perceive numerosity and reason about it arithmetically,

there is no consensus about what an appropriate computational

theory of this ability should look like. Three papers elaborate

three very different theories. Gallistel [26] suggests that the

symbols for number are realized at the molecular level and

form the basis for the brain’s ability to represent every kind of

quantity, not just numerosity. His theory attributes Weber’s

Law to the limited number of bits used to represent magnitudes

across the many orders of magnitudes. He calls attention to the

fact that fixed-point schemes for representing number obey

Weber’s Law. Hannagan et al. [27] suggest that numbers are

coded by vectors of activation across multiple cortical units.

Successive integers are obtained through multiplication by a

fixed but random matrix. Their scheme also generates

Weber’s Law. Zorzi & Testolin [28] develop a scheme in

which the neural representation emerges from the interaction

between deep neural networks endowed with basic visual pro-

cessing when confronted with visually experienced sets. Their

scheme also exhibits Weber’s Law-like properties.

5. Modality specificity and modality
independence

Numerical abilities in the non-human species described in this

issue are largely confined to a single modality: in monkeys,

birds and bees vision, and in anurans, audition. Its numerosity

is, however, an abstract, amodal property of a set, as Giaquinto

[3] explains. Although Benson-Amram et al. [15] rely on audi-

tory playback experiments of mammals in the wild, it seems

likely that when lions and hyenas make numerical assessments

of their own group and a competing group, they will use not

only auditory information about the unseen competitors but

also visual and other modalities to assess the number of their

own group, and hence make a cross-modal comparison of

numerosities. In fact, laboratory experiments show that mon-

keys and human infants can make cross-modal numerical

comparisons between vision and audition (e.g. [29,30]). It not

yet clear whether this is true in other species.

Burr et al. [31] have proposed that, in humans, numerosity

is a primary visual property of a scene in the same way that

colour, contrast, size and speed are, and that the brain deploys

three visual mechanisms for making numerical discrimination

depending on the number of visual elements: for numerosities

approximately less than or equal to 4 (subitizing), 4–9 (serial

enumeration) and large numbers where the elements are too

crowded to parse. In this last case, a quite different mechanism

takes over. However, they also note that representations of

visual numerosities can be influenced by auditory numeros-

ities, and vice versa, suggesting that humans do indeed

represent number amodally.

6. Genetics
The fact that newborn chicks, fish and human neonates can make

numerical discriminations suggests that this capacity does not

arise as a result of interaction with the environment, but is inher-

ited though subsequent interaction with environment doubtless

modifies and refines the operation of this mechanism. It is also

the case, as Butterworth [2] points out, that individual differ-

ences in numerical abilities have a substantial genetic

http://rstb.royalsocietypublishing.org/
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component, perhaps as much as 30% of the variance in systema-

tic twin studies. This suggests that the starter kit for learning

arithmetic in school includes a domain-specific mechanism for

representing numerosities, and that individual differences in

this mechanism may explain why about 5% children (and

adults), despite good formal education, have such trouble in

learning arithmetic (though not necessarily other branches of

mathematics, such as geometry). There is nowan extensive litera-

ture linking poor numerosity discrimination or identification

with poor arithmetical competence, even when other cognitive

factors are taken into account. Burr et al. [31] suggest that of

their three mechanisms, it is the enumeration mechanism that

is most closely linked to arithmetical competence.
 rans.R.Soc.B
373:20160507
7. Implications
We now understand that the capacity to represent abstract

magnitudes such as distance, duration and the numerosity of

a set are foundational brain functions, with ancient evolution-

ary roots. This understanding spurs increasingly widespread

research on the neurobiology and the genetics of these founda-

tional mechanisms. In particular, it now seems clear that what
may be learned from studies of animals far removed from

humans on the evolutionary bush (zebra fish, for example)

may reveal mechanisms for representing abstract quantities

in their brains that are also found in human brains. Insofar as

these mechanisms are foundations of human cognition and

insofar as their abnormal function has far-reaching cognitive

consequences, it is not inconceivable that in the far-distant

future, gene-editing technology might be applied to the reme-

diation of inherited defects in a human’s most abstract

thoughts, thoughts about number.
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