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Background: Arithmetical skills are essential to the effective exercise of citizenship in a numerate
society. How these skills are acquired, or fail to be acquired, is of great importance not only to individual
children but to the organisation of formal education and its role in society. Method: The evidence on
the normal and abnormal developmental progression of arithmetical abilities is reviewed; in particular,
evidence for arithmetical ability arising from innate specific cognitive skills (innate numerosity) vs.
general cognitive abilities (the Piagetian view) is compared. Results: These include evidence from in-
fancy research, neuropsychological studies of developmental dyscalculia, neuroimaging and genetics.
The development of arithmetical abilities can be described in terms of the idea of numerosity – the
number of objects in a set. Early arithmetic is usually thought of as the effects on numerosity of
operations on sets such as set union. The child’s concept of numerosity appears to be innate, as infants,
even in the first week of life, seem to discriminate visual arrays on the basis of numerosity. Development
can be seen in terms of an increasingly sophisticated understanding of numerosity and its implications,
and in increasing skill in manipulating numerosities. The impairment in the capacity to learn arithmetic
– dyscalculia – can be interpreted in many cases as a deficit in the concept in the child’s concept of
numerosity. The neuroanatomical bases of arithmetical development and other outstanding issues are
discussed. Conclusions: The evidence broadly supports the idea of an innate specific capacity for
acquiring arithmetical skills, but the effects of the content of learning, and the timing of learning in the
course of development, requires further investigation. Keywords: Arithmetic, cognitive development,
dyscalculia, numerosity, number, infants, child.

‘A child, at birth, is a candidate for humanity; it
cannot become human in isolation.’ (Pieron, 1959)

Numerosity as the basis of arithmetic

The child acquiring arithmetical skills in our kind of
numerate society encounters a variety of number-
specific cultural tools. The most obvious are the
numerical expressions: number words (one, two,

twenty-two, million…), numerals (1, 2, 22,
1000000…), roman numerals, patterns on dice,
cards and dominoes. Others will be relatively ab-
stract: arithmetical facts (5 · 3 ¼ 15), arithmetical
procedures (borrowing, long multiplication), arith-
metical laws (a + b ¼ b + a; if a)b ¼ c then a ¼
b + c; and so on). The skills that need to be acquired
include reading and writing numbers, counting ob-
jects in a set, calculating in the four basic arithmetical
operations, reading numerals aloud, writing numer-
als, applying these skills in money tasks, telling time
and dates, finding a page in a book, selecting a TV
channel, and so on. All of these skills are much more
complex and subtle than they may at first appear to
competent adults. The question addressed in this
review is this: is the process of acquiring these tools of
arithmetic supported only by general-purpose cog-
nitive capacities – such as reasoning, memories
(short- and long-term), and a sense of space – or are
we born with number-specific capacities?

The child acquiring number skills is probably not
helped by the fact that a numerical expression does
not have a single meaning. ‘Four’ (or ‘4’) can, for

example, be the name of a TV channel – a quite
arbitrary signifier, rather like a proper name or label.
It can also be a page number, and be part of a
familiar fixed sequence, coming immediately after
page 3 and before page 5. Numbers are also used to
refer to continuous analogue quantities, such as
‘4.6 grams’. These uses are not unique to numerical
expressions: TV channels can be named with words
or acronyms (Fox, ABC); letters of the alphabet form
a familiar fixed sequence; and other quantity
expressions (yard, ton) have been used for millennia.
(For a more detailed account of the ‘situations’ in
which numerical expressions are used, see Fuson,
1988.)

The distinctive meaning of numerical expressions
is to denote the number of things in a set – the
numerosity of a set. (The term ‘numerosity’ is used
here as the cognitive counterpart to the term ‘cardin-
ality’ used by mathematicians and logicians). This
is what is special about numbers. It entails that
numerosity is abstract: it is not a physical object or
the property of an object (such as a colour or shape).
Rather, it is a property of a set that can have any type
of member: physical objects, sounds, or other ab-
stract objects (as in three wishes). This does not
make numerosities mysterious or a convenient fic-
tion (Giaquinto, 2001), but it does mean that our
grasp of particular numerosities may depend on the
nature of the sets. For example, the numerosity of a
familiar patterns of dots, such as are seen on dice, is
easier to apprehend than the same number of dots
randomly arranged, and it gets more difficult the
more dots there are (Mandler & Shebo,1982).
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The idea of numerosity entails or embodies famil-
iar consequences such as two sets have the same
numerosity if and only if members of each can be put
in one-to-one correspondence with none left over.
Broadly, a child will understand the concept of
numerosity if she or he:

• understands the one-to-one correspondence prin-
ciple;

• understands that sets of things have numerosity
and that some manipulations of these sets affect
the numerosity – combining sets, taking subsets
away, and so on – and that one set has the same
numerosity as another, or a greater numerosity, or
a smaller numerosity;

• understands that sets need not be of visible things;
they can equally be audible things, tactile things,
abstract things (like wishes);

• can recognise small numerosities – sets of up to
about four objects – without verbal counting.

(following Butterworth, 1999)
Now, the child has to sort out when a numerical

expression is being used as a label, to locate an ob-
ject in a sequence, to refer to an amount of stuff or as
a definite numerosity.

The usual arithmetical operations of addition,
subtraction, multiplication and division can be de-
fined in terms of operations on sets and their num-
erosities, and this is how we normally think about
them. The sum of an addition, for example, can be
thought of as the numerosity of the union of two, or
more, disjoint sets; similarly, subtraction, multi-
plication and division can be thought of in terms of
the results of operations on sets (Giaquinto, 1995).
In formal curricula, multiplication, division and
fractions typically follow addition and subtraction,
and are explained in terms of them. For example, the
mathematics curriculum in the UK begins in
Reception (4–5 yrs) and Year 1 (5–6 yrs) with
counting, adding and subtracting, and then in Year 2
introduces ‘the operation of multiplication as
repeated addition or as describing [e.g., counting] an
array’ (DfEE, 1999, Key Objectives, p. 3), and table
facts are taught up to Year 5. Fractions are intro-
duced in Year 3, and division, as the complement of
multiplication, in Year 4.

This review will focus on counting, addition and
subtraction, since these are the topics which are the
most researched, and which are the pedagogical, and
to a large extent, the conceptual basis of other as-
pects of arithmetic. However, multiplication, division
and fractions involve concepts that are not readily
derivable from the concept of numerosity. This is
discussed further below.

One of the key debates is whether the child is
helped to understand the special numerosity mean-
ing by possessing a specific innate capacity for
numerosities, rather than, say, a capacity for dealing
with, or being sensitive to, quantities more generally.
Crucial evidence comes from the people who appear

to have a selective deficit in this capacity which
profoundly affects their ability to learn arithmetic.
This condition is known as ‘dyscalculia’, and is
discussed in detail below.

Although it is widely agreed that possession of
something like the concept of numerosity is neces-
sary for normal arithmetical competence, it is by no
means agreed how individuals arrive at this concept.
According to Piaget (1952), necessary preconditions
were a grasp of certain logical principles, since
arithmetic is really a part of logic:

Our hypothesis is that the construction of number
goes hand-in-hand with the development of logic, and
that a pre-numerical period corresponds to a pre-logical
level. Our results do, in fact, show that number is
organised, stage after stage, in close connection with
gradual elaboration of systems of inclusion (hierarchy
of logical classes) and systems of asymmetrical rela-
tions (qualitative seriations), the sequence of numbers
thus resulting from an operational synthesis of classi-
fication and seriation. In our view, logical and arith-
metical operations therefore constitute a single system
that is psychologically natural, the second resulting
from a generalisation and fusion of the first, under two
complementary headings of inclusion of classes and
seriation of relations, quality being disregarded. (Piaget,
1952, p. viii)

Thus, for Piaget, our idea ofnumerositywasbuilt on
more basic capacities. These included the capacity to
reason transitively; that is, the child should be able to
reason from the facts that if A is bigger thanB, andB is
bigger than C, then A is bigger than C. Without this
capacity, the child could not put the numbers in order
of size, which is clearly fundamental. A second capa-
city that the child must develop is the idea that the
number of things in a set is ‘conserved’, to use his
technical term,unless anewobject is added to the set,
or an object subtracted from it. Merely moving the
objects around – should not affect number: for
example, spreading them out so they take up more
room. Even more basic than either of these two
capacities, as Piaget pointed out, is the ability to ab-
stract away from the perceptual properties of the
things in the set. To grasp the numerosity of a set, one
needs to ignore all the particular features of the ob-
jects in it: their colour, their shape, their size, andeven
what they are: a set of three cats has the same num-
erosity as a set of three chairs, or indeed of three
wishes. The idea of number is abstract. And the ideas
of the ‘same number’ or ‘different numbers’ are
abstractions from abstractions. The emergence of the
capacity for numerosity will depend on the develop-
ment of the necessary prior capacities, what Piaget-
ians call ‘prerequisites’. It will also depend, as do
many conceptual and logical abilities, on interacting
with the world. The concept of numerosity could
emerge as a result of manipulating objects, for
example, lining up sets to establish one-to-one cor-
respondence between the members of the two sets,
for sharing out sweets or toys.
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Some authors have proposed that cognitive capa-
cities that are not specific to number are necessary,
or at least, very important, in acquiring arithmetical
skills. These include working memory (e.g., Ashcraft,
Donley, Halas, & Vakali, 1992; Hulme & Mackenzie,
1992), spatial cognition (e.g., Rourke, 1993), and
linguistic abilities (e.g., Bloom, 1994; Carey &
Spelke, in press). Correlations between these cognit-
ive abilities and standardised tests of arithmetic are
well established. For example, Bull and Johnston
(1997) found a correlation of ).54 between one
measure of language ability (naming latencies) and
maths achievement. However, it is by no means clear
how the causal relationships work: does good arith-
metic help on working memory, spatial or language
tasks? Is there a common factor that underpins all of
the tasks? It is possible to explore the causal rela-
tionships systematically in children with specific
deficits in arithmetic learning and with impairments
to the putative supporting cognitive capacities.

Infant capacities

Contrary to what Piaget and others have proposed,
infants seem to respond to the numerical properties
of their visual world, without benefit of language,
abstract reasoning, or much opportunity to manip-
ulate their world.

Numerosity detection/recognition and
manipulation

In a pioneering experiment, Starkey and Cooper
(1980) showed that 4–6-month-olds were sensitive to
the numerosity of an array of black dots using a
‘habituation–dishabituation’ paradigm. Infants like
novelty and will look longer at new things. The same
thing repeatedly causes them to habituate, lose
interest, while a new thing causes them to regain
interest – to dishabituate. In this study, infants
would dishabituate to a new number of dots up to
four. Of course, with each change of numerosity,
there will be changes of other stimulus dimensions,
including total amount of blackness, total length of
edge, and perhaps spatial frequency. Starkey and
Cooper tried to control for this by changing the
arrangement of the habituation dots in each trial,
and by ensuring that the dishabituation stimulus
covered the same extent.

In a study of children of 6–8 months, Starkey,
Spelke, and Gelman (1990) used pictures of objects,
such as an orange, a keychain, sunglasses, a glove
and so on. Instead of cards with two dots close to-
gether alternating with two dots far apart, each card
had two objects, but different objects each time.
Therefore, each new card with the same number of
objects had new pictures on it. The dishabituating
card also had new pictures on it, but there were three
pictures this time. Since each card was new for the

baby, would the baby have mentally categorised the
habituating cards as showing two things, so that
when a card with three things was presented, they
would regain interest and look longer? If they do look
longer, it cannot be because of mere novelty, since
each card was new. It turned out that babies did look
significantly longer at the card with three pictures on
it. Again, the infants seemed to be sensitive to the
number of pictures on the card. This means they
categorised what they saw in a way that is quite
abstract: the particular features of each picture – the
colour, the objects depicted, their size, their bright-
ness – which change with every card – have to be
disregarded.

Similarfindingshavebeen reported forbabies in the
first week of life (Antell & Keating,1983). Van Loos-
broek and Smitsman (1990) showed babies of 5 and
13 months 2, 3 or 4 rectangles in shades of grey that
moved in random trajectories on a computermonitor.
From time to time one rectangle would appear to pass
in front of another, occluding part of it. As in the pre-
vious studies, after a while the babies looked at the
screen less, but when the number of rectangles
changed, either by adding one more rectangle, or
taking one away, they started to look significantly
more. They cannot have been responding to a change
in the pattern, since each of the rectangles was in
constant motion, so they must have extracted the
numerosity from the moving displays.

Infants also seem not only to recognise small
numerosities up to about 4, they also seem to have
some sense of their relative size. Brannon (2002)
showed 11-month-old infants a sequence of displays
with an increasing number of dots, and then a test
sequence. If this sequence had a decreasing number
of dots, the infant would look about twice as long as
if it also had an increasing number. However, infants
two months younger did not show this effect.

Despite these demonstrations of infants’ sensitiv-
ity to numerosities, several studies have sought to
show that infants are responding to continuous
quantity rather than numerosity. Certainly, when
these are put into conflict rather than controlled or
randomised, continuous quantity seems a more
powerful cue (Feigenson, Spelke, & Carey, 2002;
Mix, Huttenlocher, & Levine, 2002). However, a re-
cent study using groups of moving dots, where con-
tinuous quantity of figural area and contour are
strictly controlled, showed that infants do respond to
numerosity (Wynn, Bloom, & Chiang, 2002).

There is, of course, no reason why infants should
not have brain systems for processing both types of
stimulus. Normally, the environment correlates the
two types – more objects will normally have greater
spatial extent – so that the outputs of two systems
will be consistent, so relying on continuous quantity
as a guide to numerosity could be adaptive. More
experience of the world, and stress on the import-
ance of number, would change the way these con-
flicts are resolved.
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Is there an upper limit to the infant’s concept of
numerosity? Can she enumerate 4, 10, or 100? Three
seems to be the maximum, though infants in the
StarkeyandCooper (1980) studydistinguished4 from
3, but 4 for them may have represented just ‘more
than three’. However, we cannot be sure that this
limitation lies in the baby’s idea of numerosity rather
than in her ability to perceive and to remember what
has been perceived. Our understanding that numer-
osities have no limit seems to depend on our sense
that it is always possible to keep adding one. Thus,
any limitation on the infant’s part could have more to
do with her ability to carry out successive additions,
and the chain of reasoning needed to get from that to
the idea numbers have no upper limit.

The most likely limitation is the ability to take in
the numerosity of visual array of objects at a glance,
and without counting. Even in adults, the limit is
about four. This seems to be a specialised process in
visual perception, which is usually given the name
‘subitising’ (Mandler & Shebo, 1982). Dehaene and
Changeux (1993) have created a computer model of
this process, which very simply and effectively ex-
tracts the number of objects from a visual display,
disregarding their size, shape or location. The rep-
resentation that is extracted can then be trained to
make comparisons. It is tempting to think that
something like this has been built into the visual
processing system of the infant’s brain. For numer-
osities beyond four, infants dishabituate when there
is a 2:1 ratio (e.g., 8:16) but not when there is a 2:3
ratio (8:12) (Xu & Spelke, 2000).

Possessing a concept of numerosity implies more
than just being able to decide whether two sets do or
do not have the same numerosity. It implies an ability
to detect a change in numerosity when new members
are added to the set, or old members are taken away –
in other words, to be able to compute the arithmetical
consequences on adding and subtracting. Wynn
(1992) showed that infants are able to do this,making
use of the fact that babies look longer at events that
violate their expectations. Infants of 4 to 5 months
were shown a doll being placed on a stage, then cov-
eredby a screen, and thena seconddoll placedbehind
the screen. The infant couldnowseenodolls at all and
had to imagine the situation behind the screen. If the
infanthadcomputed that onedoll plus onedollmakes
two dolls, then her arithmetical expectation would be
that therewould be twodolls behind the screen.Wynn
found that when the screen was removed, infants
looked longer when there was one doll or three dolls
than when there were two dolls. Similarly, when two
dolls were placed on the stage, covered, and one doll
shown to be removed, infants expected that there
would be one doll left, and looked longer at other
numbers.

This experiment has now been frequently replic-
ated, and Simon, Hespos, and Rochat (1995) have
shown that 3–5-month-old infants look longer when
the number of dolls is unexpected than when their

identity is unexpected (i.e., one doll is surreptitiously
changed behind the screen). There is also evidence
that infants are responding to numerosity rather
than location (Koechlin, Naccache, Block, &
Dehaene, 1999).

These studies have not been without their critics,
and there have been failures to replicate (Wakeley,
Rivera, & Langer, 2000), and alternative explana-
tions in terms of familiarity of the objects displayed
(Cohen & Marks, 2002). Wynn has replied to both
critiques, noting differences in experimental proced-
ure that could have led to different outcomes (Wynn,
2000, 2002).

More radically, Carey, Spelke, and their colleagues
have suggested that the mental operations that seem
to involve numerosities can really be explained in
terms of two essentially non-numerical processes.
First, there is an object-tracking system that is
needed in any case to maintain attention to up to
four objects in the environment. Experiments which
demonstrate that infants respond to changes in
number, or indeed, to changes from the expected
number, are explicated in terms of changes in the
state of the object-tracking system. Second, there is
a system for representing and comparing continuous
quantity (Carey & Spelke, in press). In the experi-
ment by Xu and Spelke (2000) described above, the
discontinuity between minimum ratio for small
number discrimination (2:3) and large number dis-
crimination (1:2) is explained in terms of a shift from
the object-tracking system to the continuous quan-
tity system. (Apprehension of exact numerosities
greater than 4 depend, according to this view, on
acquiring number words.)

However, the current balance of evidence favours
the idea that infants are able to represent the nu-
merosity of sets of objects and carry out mental
manipulations over these representations.

Development of counting

One of the earliest and perhaps the most important
contact between the child’s sense of number and the
conceptual tools provided by the culture is counting.
Many nursery rhymes involve counting or counting
words (One, two buckle my shoe, On the first day of
Christmas), and even the titles of stories for children
contain number words (Snow White and the Seven
Dwarves, The Famous Five). Counting is complex
skill which involves learning the counting words in
the correct order, coordinating the production of
counting words with the identification of objects in
the set to be counted, and that each object in the set
is counted once and only once. Moreover, the child
has to understand that the process of counting can
yield the number of objects in the set.

The philosopher John Locke (Locke, 1690/1961)
recognised that counting words are helpful in keep-
ing in mind distinct large numerosities. ‘Some
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Americans I have spoken with (who were otherwise of
quick and rational parts enough) could not, as we do,
by any means count to 1,000; nor had any distinct
idea of that number, though they could reckon very
well to 20.’ These Americans, the Tououpinambos
from the Brazilian jungle, ‘lacked names for numbers
above 5’. Locke believed that we construct the idea of
each number from the idea of ‘one’ (‘the most uni-
versal idea we have’). By repeating ‘this idea in our
minds and adding the repetitions together … thus by
adding [the idea of] of one to the [the idea of] one, we
have the complex idea of a couple.’ He thought that
number names were essential for acquiring distinct
ideas of largish numbers, and that a system of
number names ‘conduce[s] to well reckoning’ (Locke,
1690/1961). Thus for Locke, the basic ideas of
numerosity are available to us without the help of
culture, but that culture can be helpful in some
circumstances.

Of course, Locke depended on for this conclusion
on casual observation rather than systematic invest-
igation and it would certainly be extremely inter-
esting to use modern methods to explore this
hypothesis in children raised in cultures that lacked
names for numbers above 5. A few such cultures still
exist, in Amazonia, New Guinea and notably in
Australia where few of the Aboriginal language have
number words above three, and those come through
borrowing (Dixon, 1980).

Learning the counting words

Counting makes the first bridge from the child’s in-
nate capacity for numerosity to the more advanced
mathematical achievements of the culture into which
she was born. The least mathematical of cultures en-
able their members to do much more than the infant.
They can keep track of quite large numerosities
counting with special number words or body-part
names; they can do arithmetic beyond adding or
subtracting one from small numerosities which they
will need for trading or for ritual exchanges.

Though it seems very to easy to us adults, learning
to count takes about four years from two to six.
Children start around two years old, progress in
stages until about 6 years old when they understand
how to count and how to use counting in a near-
adult manner.

Gelman and Gallistel (1978) have identified the
skills, what they call ‘principles’, that are required to
be able to count. Consider the example of a child
counting five dinosaurs:

• The number words from ‘one’ to ‘five’, or, more
properly, we need to know five counting words that
we always keep in the same order. (The ‘stable
order principle’.)

• Each of these words must be linked with one and
only one object: no word must be used more than
once and all objects must be counted. That is, we

must put each object in one-to-one correspond-
ence with the counting words. (the ‘one-to-one
principle’.)

• The child must be in a position to announce the
number of toy dinosaurs by using the last counting
word used: ‘One, two, three, four, five. Five toy
dinosaurs.’ (The ‘cardinal principle’.)

Gelman and Gallistel (1978) proposed two further
principles, ‘abstractness’, which means that any-
thing can be counted, and ‘order-irrelevance’, which
means that you can start counting with any object in
the set. It is clear that a grasp of the principles fol-
lows from understanding the concept of numerosity.
Sets are not intrinsically ordered. Understanding
this means that you understand the order-irrelev-
ancy principle. There is also no constraint on the
kinds of things that can be members of a set, pro-
vided they can be individuated. Understanding this
implies holding the principle of abstractness. Of
course, children, and adults, may possess the con-
cept of numerosity without fully understanding and
without having derived all the principles that validly
follow from it.

Learning the sequence of counting words is the
first of these skills mastered. Children seem to know
at about two and half what a number word is, and
rarely intrude non-number words into the sequence,
even when the order is incorrect (Fuson, 1988,
Chapter 10).

Even learning the sequence of number words is
not that straightforward. Children of two or three
years often think of the first few number words as
just one big word ‘onetwothreefourfive’ and it takes
them some time to learn that this big word is really
five small words (Fuson, 1992). Gelman and Galli-
stel’s (1978) observation of a 3 1

2-year-old child trying
to count eight objects show that getting the sequence
right is a difficult stage: ‘One, two, three, four, eight,
ten, eleben. No, try dat again. One, two, three, four,
five, ten, eleben. No, try dat again. One! two! three-
ee-four, five, ten, eleben. No. ... [finally] ... One, two,
three, four, five, six, seven, eleven! Whew!’

One-to-one correspondence appears at about two
years of age quite independently of learning the se-
quence of counting words. At 2, children are able to
give one sweet to each person, put one cup with each
saucer and can name each person in a room or a
picture, or point to them, once and only once (Potter
& Levy, 1968). If you show a ‘puppet who is not very
good at counting’ counting the same object twice or
missing an object altogether, children of 3 1

2 are very
good at spotting these violations of one-to-one cor-
respondence (Gelman & Meck, 1983). And almost all
children point to each object when they count, even
when they can use the number words correctly, so
there is one-to-one correspondence between objects,
points and words (Gelman & Gallistel, 1978).

Children of three years or so may count in some
but not all appropriate circumstances. When asked
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to give three toy dinosaurs, they may just grab a
handful and give them to you without counting.
Wynn (1990) calls them ‘Grabbers’. Grabbers clearly
know that number words represent a set of more
than one, even if they have not yet grasped the role of
number words in counting, and do not use the last
word of a count to say how many.

At perhaps an earlier stage they think that the
number word is just a label that attaches to an ob-
ject. Here is what Adam, a Grabber, did in one of
Wynn’s tasks.

Experimenter (E): So how many are there? Adam
(A): [Counting three objects ...] One, two, five! E:
[Pointing towards the three items] So there’s five here?
A: No, that’s five [pointing to the item he’d tagged ‘five’]
... E: What if you counted this way, one, two, five?
[Experimenter counts the objects in a different order
than Adam has been doing] A: No, this is five [pointing
to the one he has consistently tagged five]

In a give-a-number task, ‘Counters’, usually a few
months older, will count, either aloud or silently,
passing you the toys one by one. They also reliably
give you the last word of the count in answer to ‘How
many?’, satisfying the cardinal principle. These chil-
dren are initially able to count only small numerosit-
ies, and probably build up their competence
systematically from 1 to 2, from 2 to 3, from 3 to 4 and
so on up. In a give-a-number task, they will start by
beingable reliably to give1, then togive2, butperhaps
not3, then3butperhapsnot4.Soby3 1

2most children
have grasp of small numerosities, and know that
counting is a way to find the numerosity of a set.

According to Gelman and her colleagues, children
learning to count know the principles before their
skills are fully developed (e.g., Gelman & Gallistel,
1978). Certainly, children’s performance is affected
by number size, with larger numbers being harder
(e.g., Fuson, 1988), and mastery of the three prin-
ciples is not completely synchronised, with stable-
order being reliably earliest, one–one correspond-
ence between counting words and objects following
later, and the cardinal principle the last of the three
(Fuson, 1988, Chapter 10).

The cardinal word principle – the last number
named in a count is the numerosity of the set
counted – also follows from the concept of numer-
osity, since you are establishing a correlation be-
tween members of a set whose numerosity you do
know, the number words up to five, say, and mem-
bers of the set of things to be counted, whose num-
erosity you do not know. It may follow in a practical
way as well. Recall that infants can recognise the
numerosities of objects up to about 3.

Fuson (1988) suggests that children may notice
that when they count a set ‘one two three’, they get
the same number as when they subitise the set. This
helps them realise that counting up to N is a way of
establishing that a set has N objects in it. Repeating
the count, and getting the same number obtained

from subitising, will reinforce the idea that every
number name represents a unique numerosity.
Again, this is something obvious to us, but may not
be obvious to the child, especially as in practice the
child will sometimes count the same set and get
different results. He will count (or miscount) ‘one two
three dinosaurs’, and may count again, ‘one two four
dinosaurs’, and then again, ‘one two three four
dinosaurs’. He may wonder whether different num-
ber words can name the same numerosity, the
numerosity of the set of dinosaurs.

Piaget (1952) was among the first to see that full
grasp of the concept of numerosity meant being able
to abstract away from – ignore – irrelevant perceptual
features of the set to be enumerated, so that you do
not think, for example, there are more things just
because they are more spread out (or more closely
packed together). He saw the development of the
child’s thinking in general as a move away from the
particular to the general and abstract.

The conflict between the different sources of evid-
ence about numerosity can be seen very clearly in
the way children between 4 and 6 try to establish
whether two sets have the same number. What
seems to happen is that during this period, they
come to relegate perceptual cues such as the spacing
of objects, and to depend exclusively on genuine
numerosity information, such as correspondence
and counting. They cease to be fooled by changing
the spacing of objects. In Piagetian terms, number is
‘conserved’ under perceptual transformations. The
child progresses to conservation, the sign that the
number concept is grasped, in stages. First, the child
relies solely on perceptual cues; then the child will be
able to use one-to-one correspondence but may still
rely more on perceptual cues, and finally, the child
will rely entirely on correspondence, and will not be
fooled by perceptual cues.

Piaget believed that counting, and learning num-
ber words to do it, was not necessary to construct the
concept of numerosity, which he thought was built
up from logical concepts and reasoning until pos-
session of the concept was evidenced by conser-
vation of number under transformations at about
6 years.

Development of arithmetic

Counting is the basis of arithmetic for most children.
Since the result of adding two numerosities is
equivalent to counting the union of two disjoint sets
with those numerosities, children can learn about
adding by putting two sets together and counting the
members of their union.

From counting all to counting on

Childrenmake use of their counting skills in the early
stages of learning arithmetic. The number words, as
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was noted in the Introduction, have both a sequence
andanumerosity (or cardinal)meaning.AsFusonand
Kwon (1992) point out, ‘In order for number words to
be used for addition and subtraction, they must take
on cardinal meanings’ (p. 291). Children often rep-
resent the numerosity of the addend by using count-
able objects, especially fingers, to help them think
about and solve arithmetical problems.

There appear to be three main stages in the
development of counting as an addition strategy:

1. Counting all. For 3 + 5, children will count ‘one,
two, three’ and then ‘one, two, three, four, five’
countables to establish the numerosity of the sets
to be added, so that two sets will be made visible –
for example, three fingers on one hand and five
fingers on the other. The child will then count all
the objects.

2. Counting on from first. Some children come to
realise that it is not necessary to count the first
addend. They can start with three, and then
count on another five to get the solution. Using
finger counting, the child will no longer count out
the first set, but start with the word ‘Three’, and
then use a hand to count on the second addend:
‘Four, five, six, seven, eight’.

3. Counting on from larger. It is more efficient, and
less prone to error, when the smaller of the two
addends is counted. The child now selects the
larger number to start with: ‘Five’, and then car-
ries on ‘Six, seven, eight’.

(Butterworth, 1999; Carpenter & Moser, 1982)
The stages are not strictly separate, in that child-

ren may shift strategies from one problem to the
next. There is a marked shift to Stage 3 in the first six
months of school (around 5–6 years in the US, where
this study was conducted (Carpenter & Moser,
1982). Stage 3 shows a grasp of the fact that taking
the addends in either order will give the same result.
This may follow from an understanding of the effects
of joining two sets, that is, taking the union of two
disjoint sets.

Even in the earliest phases of the development of
addition abilities, children do not need to count the
union of the sets. In one set of experiments, Starkey
and Gelman (1982) showed the children two sets one
at a time so that there was no opportunity to count all
the elements. In these circumstances, most three-
year-olds could solve 2 + 1, and a few could solve
4 + 2. By 5 years, all could solve the first and 81% the
second. Interestingly, only 56% solved 2 + 4, sug-
gesting that some of the childrenwere not counting on
from larger, but were still counting on from first.

From counting on to arithmetical facts

The skilled adult typically will not need to calculate
or count single digit problems such as 3 + 5, 3 · 5,
5 ) 3, or 6 ‚ 3 and will simply retrieve the solution
from memory.

A variety of models of the mental organisation of
arithmetical facts has been proposed. One influen-
tial view has been that children learn to associate
3 + 5 with several answers, but the association with
8 will end up as the strongest (Siegler & Shrager,
1984). Another view is that facts are typically stored
as specifically verbal associations, though subtrac-
tion and division require further processes of
‘semantic elaboration’ involving manipulation of an
analogue magnitude representation (Dehaene &
Cohen, 1995). In both models, retrieval will depend
on the learning history of the individual. Thus, facts
that are learned earlier or practised more will show
greater accessibility.

The single strongest argument against these views
is that retrieval times show a very strong problem-

size effect for single-digit problems: the larger the
sum or product the longer the problem takes to solve
(Ashcraft et al., 1992). This factor is much more
potent than frequency of occurrence (see Butter-
worth, Girelli, Zorzi, & Jonckheere, 2001).

Note also that children who are using a counting
strategy to solve arithmetic problems are not using
memory retrieval. It is likely that memories are laid
down during Stage 3 of counting on from larger. This
would mean that the child would work out the result
of Larger Addend + Smaller Addend (rather than
First Addend + Second Addend) and store it in that
form. Some evidence for this comes from Butter-
worth et al. (2001), who showed that adults, who
presumably retrieve answers, are quicker to solve
Larger Addend + Smaller Addend problems than
Smaller Addend + Larger Addend problems. The
frequency of the problems in textbooks was not a
good predictor of solution times. Both this and the
problem-size effect suggest that addition facts are
organised in terms of number size rather than as
orthogonal verbal vectors or a network of associa-
tions modulated by practice effects.

Similar results were obtained for children,
6–10 years old, doing multiplication. Larger · Smaller
was faster than Smaller · Larger, even though the
(Italian) education system taught Smaller · Larger
earlier. For example, 2 · 6 is in the (Italian) 2· table
which is taught before 6 · 2, which is in the 6· table
(Butterworth, Marchesini, & Girelli, 2003). In fact,
this study showed that children start by privileging
the form in which the problem is taught, and later
reorganise their memory store to privilege the
Larger · Smaller format. Again, this suggests a spe-
cifically numerical organisation to arithmetical facts.
They are not just rote associations.

Multiplication, division and fractions

Curricula typically introduce multiplication and
division later than addition and subtraction, and
explain them in terms of repeated addition
and repeated subtraction and partitions of sets, thus
building on concepts of sets and numerosities.
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Indeed, Piaget’s (1952) treatment of multiplication is
in terms of one-to-many correspondence some years
later than addition and subtraction. However, ideas
of division as sharing are actually very early in
development, in some respects earlier even than
counting (see Nunes & Bryant, 1996), and the idea of
a half as the partition of a set is introduced in Year 1
of school in the UK (DfEE, 1999). Somemultiplication
problems can certainly be solved by addition or by
double counting the multiplier and the multiplicand.

However, thinking about multiplication or division
of two numbers just in terms of sets with one–many
correspondences fails to do justice the kinds of
situation the child encounters in everyday life, as
well as in the classroom. Prices such as ‘50p each’ is
neither the set of objects to be bought nor the mon-
etary set of the cost. Rather it is a relationship be-
tween the two sets, and remains the same (is
conserved, if you will) whether six objects are bought
or sixty. So multiplication by the price does not in-
crease the price, but only the cost. The price is a
ratio, or a kind of division, which is conserved under
some types of multiplication. For example, 2/4 is the
same ratio as 4/8 or 100/200. Understanding this is
fundamental to understanding a whole range of
primary school mathematics, including multiplica-
tion, division, and fractions.

These kinds of numbers are often referred to as
‘intensive quantities’, to distinguish them from
numbers whose meanings are ‘extensive’, that is,
sets (Schwartz, 1988). Interpreting numbers as
intensive quantities is needed for everyday problems
involving temperature and concentration. Children
of 6 to 8 believe that if you add two cups of water,
each at 40�C, the resulting mixture will be warmer
than the originals, because you are adding temper-
atures (Stavy & Tirosh, 2000); and children of 10 to
11 find it hard to work out which of two mixtures of
orange juice concentrate and water will taste more
orangey: 3 cups of concentrate to 2 cups of water, or
4 cups of concentrate to 3 cups of water (Noelting,
1980a, 1980b). In neither type of case does a grasp of
numerosity fully prepare the child to reason in the
appropriate way. Piaget (1952) noted that problems
involving proportions would be difficult.

Division also introduces a new type of number in
terms of fractions and decimals, namely, rational
numbers. These will only have been encountered
previously in the concept of a half, but they are
important in the everyday context of measures.
Again, concepts entailed by numerosities (such as
each number has a unique successor) will not work
in these contexts.

Nunes and Bryant (1996), in a very useful review,
begin their discussion of multiplicative reasoning
with the caution: this ‘is a very complicated topic
because it takes different forms and it deals with
many situations, and that means that the empirical
research on this topic is complicated too’ (p. 143). It
seems clear that where the child can think about

multiplication and division as manipulations on
sets, then it is relatively easy to acquire, but when
the task demands grasp of numbers as intensive
quantities then it is difficult.

Understanding arithmetical concepts

Children enter school with informal concepts of
number and arithmetic based on their experiences of
counting and calculation; however, much educa-
tional practice was, and still is, focused on drilling
basic arithmetical facts such as number bonds and
tables. The theoretical justification came from the
work of Thorndike (1922), formulator of the ‘law of
effect’ – or what we would now call reinforcement –
which stated that associations that lead to ‘satisfying
states of affairs’ are reinforced, those that lead to
unsatisfying states weakened. The idea then was to
build networks of reinforced associations between
number combinations such as 5 + 3 and their
arithmetical result. As the network, carefully con-
structed by the teacher, is built in the mind of the
child, so the generalisations (concepts and laws)
would be grasped. Of course, Thorndike insisted that
drilling the facts had to be fun, which meant, among
other things, being able to see their practical ap-
plications. More recently, the ‘distribution of asso-
ciations’ model (Siegler, 1988; Siegler & Shrager,
1984) has been influential. Here it is assumed that
the child may associate a number combination with
both the wrong and the correct answer. The key to
arithmetical success is to strengthen the association
with the right answer. The model predicts that the
performance on single digit arithmetical fact tasks
will be the relative frequency of the association
between the problem (e.g., 6 + 3, 6 · 3, 6 ) 3, 6 ‚ 3)
and the correct solution (9, 18, 3, 2) as compared
with the frequency of association between the prob-
lem and incorrect solutions.

Even as the Thorndike approach was being taken
up by educators, an alternative was being pur-
sued by Brownell, who advocated ‘meaningful
learning’ rather than drill (Brownell, 1935). Al-
though research showed that drill can make re-
trieval of facts faster, transfer of learning to new
problems was much better with meaningful learn-
ing. (See Resnick & Ford, 1981, Chapter 1, for a
discussion.) The time course of developing an un-
derstanding of arithmetical concepts and prin-
ciples, and applying them in a meaningful way, is
thus likely to be heavily influenced by the educa-
tional practices the child undergoes (Canobi, Reeve,
& Pattison, 1998).

Commutativity, associativity

The role of understanding has been tested on com-
muted pairs of addition facts (6 + 3, 3 + 6) and
multiplication facts (6 · 3, 3 · 6).
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If commutativity is understood, then is it neces-
sary or even desirable to store, in long-term memory,
both forms of the commute? There is evidence that
the form with M + n is accessed more readily than
n + M (Butterworth et al., 2001). This does not,
however, entail understanding. It may just mean
that the child has learned that it does not matter
which order the addends appear.

As mentioned above, Butterworth et al. (2003)
found that children of 6 to 10 years of age learning
multiplication tables reorganise their memories to
privilege M · n, over n · M, even when n · M was
learned earlier and presumably practised more.
Again, this suggests, though does not prove, that
these children understand the commutativity of
multiplication.

Interestingly, some cultures do not teach the
whole set of multiplication facts from 1 · 1 to 9 · 9 in
tabular form. In China, they only teach one half of
the set, beginning with 2 · 2 (the 1 · table being
considered trivial) to 2 · 9; but since 2 · 3 has
already been learned, the 3 · table begins with 3 · 3,
and so on. In this way, only 36 facts have to be
acquired, and the equivalence of the commuted pairs
has to be learned (Yin Wengang, personal commun-
ication). Research shows that Chinese adults are
more accurate and quicker at solving multiplication
problems than their Western peers (Campbell & Xue,
2001; LeFevre & Liu, 1997). Although this has been
attributed to more drill (Campbell & Xue, 2001;
Penner-Wilger, Leth-Steensen, & LeFevre, 2002), it
may reflect exactly the opposite – fewer facts to
memorise and better understanding.

Complementarity

Piaget (1952) has argued, quite reasonably, that a
child does not really understand addition or sub-
traction without understanding the relationship be-
tween them. That is, if 5 + 3 equals 8, then 8 – 5
must equal 3, and 8 – 3 must equal 5. This is the
Principle of Complementarity. All this should follow
from an understanding of sets and numerosities: if
set B is added to set A, and then removed, the
resulting numerosity will still be A.

Do children understand the Principle of Comple-
mentarity, and if so at what age or stage does this
understanding begin? Now, of course, it is perfectly
possible to arrive at the correct answer without
understanding the Principle of Complementarity.
Conversely, it is possible to understand the prin-
ciple, yet sometimes get the answer wrong. This
means that the ability or inability to solve these
problems is not a sure guide to understanding.
Rather, investigators have asked whether ‘inversion’
problems that can be solved by the principle are
solved better than control problems that cannot.
Starkey and Gelman (1982) found no convincing
evidence for understanding in children of 3 to

5 years of age, while other researchers have found
evidence of understanding in older children (Stern,
1992).

A systematic study of this issue was recently
reported by Bryant, Christie, and Rendu (1999).
They looked at 5–7-year-olds, and carefully con-
trolled for types of solution strategies that might be
used. For example, in a task using a set of objects, if
three new objects are added, and then exactly the
same are taken away, then the correct answer may
be achieved on the basis of a general ‘undoing’ pro-
cedure that could apply to non-numerical situations
such as splashing paint on a wall and washing it off.
Bryant et al. controlled for this by comparing adding
and removing the same objects with adding and
removing the same number of different objects. They
also looked at equivalent problems with numerals.
Children were much more successful with inversion
problems, such as 12 + 9 ) 9, than control problems
matched for sum, such as 10 + 10 ) 8. What is more,
they could use the Principle in more complex prob-
lems that required decomposition of the subtrahend.
Thus, they appeared to make use of the Principle in
problems such as 7 + 4 ) 5 by decomposing 5 into
4 + 1. Indeed, many of the children revealed by
analysis of performance to be using the principle
were able to state it in words, but by no means all.

Although the children who used the principle to
solve inversion problems did better overall than
those who calculated the solutions, by no means all
the children who did well used the principle. Factor
analyses and correlations revealed two separate
factors: a calculating factor and an understanding
factor. Similar issues arise in connection with com-
plementarity of multiplication and division. If
9 · 3 ¼ 27 is known, then 27 ‚ 9 ¼ 3 and 27 ‚ 3 ¼ 9
should both follow without the need for calculation.

Table 1 summarises the principal milestones in
the normal development of arithmetic.

Sex differences in arithmetic?

In academic achievement, boys have in the past
outperformed girls by the age of 18. This has been an
official worry since the CockcroftCommittee of Inquiry

into the Teaching of Mathematics produced its report
for the British government. But that was in 1982.
Before then, few seemed to care, and many thought it
almost improper for girls to be good at maths. In a
relatively enlightened Handbook for Teachers, issued
in 1937, the British government advised:

In mental capacity and intellectual interests [boys
and girls] have much in common, the range of difference
in either sex being greater than the difference between
the sexes. But in early adolescence the thoughts of boys
and girls are turning so strongly towards their future
roles as men and women that it would be entirely
inappropriate to base their education solely on their
intellectual similarity. (See Cockcroft (1982), Appendix
B)
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However, at the time of writing (2004) girls in
England easily outperform boys in all subjects at all
ages. There is one exception to this general rule:
mathematics. Girls are only just outperforming boys.
(DfES, 2004)

Geary (1996) reviewed a wide range of industrial-
ised countries to show that boys, on average, still
outperform girls in mathematical problem solving.
Among US teenagers, there are more boys than girls
in the upper reaches of the SAT-M (Scholastic Apti-
tude Test – Mathematics), a requirement for univer-
sity admission. The difference between boys and
girls gets larger the higher up the range.

However, even in the USA at 17 years the average
difference between boys and girls is still only 1%. The
most recent cross-national comparisons using the
same tests in all countries, the Third International
Maths and Science Survey (TIMSS, Keys, Harris, &
Fernandes, 1996) reinforces the overall picture that in
most countries, including the USA, there is no stat-
istical difference between boys and girls (see Table 2).

However, there are still a few countries in which
boys reliably outperform girls, most dramatically in
England. What is certainly clear from the TIMSS data
is that the differences between countries, between
educational practices, has a vastly greater effect on
performance than the difference between sexes.

Developmental dyscalculia

Disorders of numeracy development, ‘developmental
dyscalculia’ (henceforth DD), can prove useful in
understanding the course of normal development
and addressing our original question: is dyscalculia
the consequence of general-purpose cognitive capa-
cities or is it due to an abnormalities of the in an
innate capacity for numerosities?

DD has been defined by the UK Department for
Education and Skills as:

A condition that affects the ability to acquire
arithmetical skills. Dyscalculic learners may have
difficulty understanding simple number concepts,
lack an intuitive grasp of numbers, and have prob-
lems learning number facts and procedures. Even if
they produce a correct answer or use a correct
method, they may do so mechanically and without
confidence. (DfES, 2001)

This definition draws attention to the ‘intuitive
grasp of numbers’ which is essentially grasping the
idea of numerosities. The other problems faced by
dyscalculic learners stem from the lack of an intuit-
ive grasp of number.

Prevalence of disorders of learning arithmetic

Specific disorders of numeracy are neither widely
recognised nor well understood. Children can be bad
at maths in many different ways. Some may have
particular difficulty with arithmetical facts, others
with procedures and strategies (Temple, 1991), while
most seem to have difficulties across the whole
spectrum of numerical tasks (Landerl, Bevan, &
Butterworth, 2004). Traditional definitions (e.g.,
DSM-IV) state that the child must substantially
underachieve on a standardised test relative to the
level expected given age, education and intelligence,
and must experience disruption to academic
achievement or daily living. Standardised attain-
ment tests, however, generally test a range of skills,
which may include spatial and verbal abilities, be-
fore collapsing the total into one global score of
‘maths attainment’. In addition, standardised tests
are diverse, so what is meant by ‘maths attainment’

Table 1 Milestones in the early development of arithmetic

Age Milestones (Typical study)

0;0 Can discriminate on the basis of small numerosities (Antell & Keating, 1983)
0;4 Can add and subtract one (Wynn, 1992)
0;11 Discriminates increasing from decreasing sequences of numerosities

(Brannon, 2002)
2;0 Begins to learn sequence of counting words (Fuson, 1992);

can do one-to-one correspondence in a sharing task (Potter & Levy, 1968)
2;6 Recognises that number words mean more than one (‘grabber’) (Wynn, 1990)
3;0 Counts out small numbers of objects (Wynn, 1990)
3;6 Can add and subtract one with objects and number words

(Starkey & Gelman, 1982); Can use cardinal principle
to establish numerosity of set (Gelman & Gallistel, 1978)

4;0 Can use fingers to aid adding (Fuson & Kwon, 1992)
5;0 Can add small numbers without being able to count out sum

(Starkey & Gelman, 1982)
5;6 Understands commutativity of addition and counts on from

larger (Carpenter & Moser, 1982); can count correctly to 40 (Fuson, 1988)
6;0 ‘Conserves’ number (Piaget, 1952)
6;6 Understands complementarity of addition and subtraction

(Bryant et al, 1999); can count correctly to 80 (Fuson, 1988)
7;0 Retrieves some arithmetical facts from memory
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may vary substantially between tests. For this
reason it has been hard for researchers to pinpoint
the key deficits in dyscalculia, or to be sure how to
define dyscalculics for study. A range of terms for
referring to developmental maths disability has
emerged, including ‘developmental dyscalculia’ or
DD (Shalev & Gross-Tsur, 1993; Temple, 1991);
‘mathematical disability’ or MD (Geary, 1993);
‘arithmetic learning disability’: AD, ARITHD, or ALD
(Geary & Hoard, 2001; Koontz & Berch, 1996; Siegel
& Ryan, 1989); ‘number fact disorder’ or NF (Temple
& Sherwood, 2002); and ‘psychological difficulties in
mathematics’ (Allardice & Ginsburg, 1983). As
Geary (1993) and Geary and Hoard (2001) remark,
these different classifications seem in most cases to
describe the same condition.

The term ‘developmental dyscalculia’ will be used
in this Annotation, but is intended to refer to
all these groups. Table 3 shows three population
estimates of prevalence.

There are striking differences between these estim-
ates, presumably due to differences in criteria.
There is also a striking co-morbidity with deficits in
literacy, despite differences among the studies in
both criteria and orthography. Nevertheless, more
than half of all the dyscalculic children reported in
these studies have no literacy deficit. This gives rise
to two important issues: (1) why is the incidence of
literacy difficulties among dyscalculics and of maths
difficulties among dyslexics so high relative to nor-
mal children? (2) why are the majority of both groups
free of a double deficit?

Characteristics of dyscalculia

It is generally agreed that children with dyscalculia
have difficulty in learning and remembering arith-
metic facts (Geary, 1993; Geary & Hoard, 2001;
Ginsburg, 1997; Jordan & Montani, 1997; Kirby &
Becker, 1988; Russell & Ginsburg, 1984; Shalev &
Gross-Tsur, 2001), and in executing calculation
procedures. Temple (1991) has demonstrated using
case studies that these abilities are dissociable in
developmental dyscalculia, though this does not
seem to be true of the majority of dyscalculic chil-
dren who have problems with both (Russell & Gins-
burg, 1984).

Many researchers suggest that dyscalculia is sec-
ondary to more general or more basic cognitive
abilities such as semantic memory (Geary et al.,
2000, 2001). However, neuropsychological studies of
adults with neurological damage strongly indicate
that number knowledge is dissociable from semantic
memory (Cappelletti, Butterworth, & Kopelman
(2001), and that the semantic memory systems for
numerical and non-numerical information are
localised in different areas of the brain (Thioux,
Seron, & Pesenti, 1999).

Working memory difficulties have also been
implicated. Geary (1993) suggests that poor working
memory resources not only lead to difficulty in exe-
cuting calculation procedures, but may also affect
learning of arithmetic facts. Koontz and Berch (1996)
tested children with and without dyscalculia using
both digit and letter span (the latter being a measure

Table 2 International comparisons of sex differences in arithmetical abilities at two ages (from Keys et al., 1996)

Age 9–10 Age 14

Country
Mean
(points)

Difference in
favour of boys Country

Mean
(points)

Difference in
favour of boys

Singapore 625 )10 Singapore 601 0
Scotland 520 0 Hungary 502 1
USA 544 2 Canada 494 2
Canada 533 3 Germany 485 2
Hungary 549 5 Scotland 464 3
England 513 5 USA 476 5
Norway 502 5 Sweden 478 5
Japan 693 8* France 493 8
Netherlands 577 15* Japan 571 11*

Switzerland 506 14*
England 476 17*

*Statistically significant difference.

Table 3 Prevalence estimates of developmental dyscalculia

STUDY Location
Estimate of

learning disability Criterion
Percentage co-morbid

literacy disorder

OSTAD (1998) Norway 10.9% ‘Maths disabled’ Registered for special long-term help 51% Spelling disorder
LEWIS et al. (1994) England 3.6% ‘Specific arithmetic

difficulties’
<85 on arithmetic test, >90 on NVIQ 64% Reading difficulties

GROSS-TSUR et al. (1996) Israel 6.4% ‘Dyscalculic’ Two grades below chronological age 17% Reading disorder
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of phonological working memory capacity which is
not confounded with numerical processing). This
study found that dyscalculic children performed
below average on both span tasks, though IQ was not
controlled. McLean and Hitch (1999) found no dif-
ference on a non-numerical task testing phonolo-
gical working memory (nonword repetition),
suggesting that dyscalculic children do not have re-
duced phonological working memory capacity in
general, although they may have a specific difficulty
with working memory for numerical information.
Temple and Sherwood (2002) found no differences
between groups on any of the working memory
measures (forward and backward digit span, word
span and the Corsi blocks) and no correlation be-
tween the working memory measures and measures
of arithmetic ability. Thus, although various forms of
working memory difficulty may well co-occur with
maths difficulties, there is no convincing evidence
implicating any form of working memory as a causal
feature in dyscalculia.

While there is a high co-morbidity between
numeracy and literacy disabilities (see Table 2), it is
unclear why this should be. Rourke (1993) has
suggested that those suffering a double deficit will
have a left hemisphere problem, while the pure
dyscalculics will have a right hemisphere abnor-
mality affecting spatial abilities. However, Shalev,
Manor, and Gross-Tsur (1997) found no qualitative
difference between children with both reading and
maths disability and children with maths disability
only. No quantitative differences on mathematics
tasks were found between dyscalculic children and
those with both dyslexia and dyscalculia when the
groups were matched for IQ (Landerl et al., 2004).

Other conditions which have been associated with
DD are ADHD (Badian, 1983; Rosenberg, 1989;
Shalev et al., 2001), poor hand–eye coordination
(Siegel & Ryan, 1989); and poor memory for non-
verbal material (Fletcher, 1985). Shalev and Gross-
Tsur (1993) examined a group of seven children with
developmental dyscalculia who were not responding
to intervention. All seven were suffering from addi-
tional neurological conditions, ranging from petit
mal seizures through dyslexia for numbers, atten-
tion deficit disorder and developmental Gerstmann’s
syndrome.

In summary, while it is clearly the case that DD is
frequently co-morbid with other disabilities, causal
relationships between the disorders have not been
proven. In addition, the utility of subtyping dyscal-
culics according to neuropsychological or cognitive
correlates will not be clear until it has been shown
that the different subtypes display qualitatively
different patterns of numerical deficit.

DD appears to be a specific problem with under-
standing basic numerical concepts, especially the
concept of numerosity. This could affect even very
simple tasks such as counting or comparing
numerical magnitudes, as was suggested in our

account of normal development. Geary, Hamson,
and Hoard (2000) found small but systematic group
differences between 1st grade dyscalculic children
and controls in magnitude comparison, while Koontz
and Berch (1996) found that dyscalculic children
appeared to be counting to three rather than subit-
ising in a dot-matching task. Both of these studies
suggest that this very fundamental capacity could be
tied to the child’s understanding of numerosity.
Certainly, it has been argued that it underpins the
acquisition of counting skills (Fuson, 1988).

One recent study showed reliable reaction time
differences between dyscalculic children and maths
normal children (including a group with dyslexia) on
tests of counting and of number magnitude com-
parison (Landerl et al., 2004). A specific dyscalculia
screener is based on reaction time measures of
estimating the number of dots and magnitude com-
parison (Butterworth, 2003).

Is there a specific neuroanatomical system?

Functional neuroimaging reveals that the parietal
lobes, especially the intraparietal sulci, are active in
numerical processing and arithmetic (Dehaene,
Piazza, Pinel, & Cohen, 2003), and studies of brain-
lesioned patients (Cipolotti & van Harskamp, 2001)
have identified the left IntraParietal Sulcus (IPS) and
the angular gyrus as critical to normal arithmetical
performance. Simpler numerical capacities, such as
the ability to estimate the numerosity of small sets,
appear to be specialised in the right IPS (Piazza,
Mechelli, Butterworth, & Price, 2002).

To date, it is not known whether the intraparietal
sulci underpin infant capacities, and hence their role
in subsequent development is far from clear. How-
ever, a recent voxel-based morphometric study of the
brains of adolescents with poor arithmetic presents
intriguing evidence. Isaacs, Edmonds, Lucas, and
Gadian (2001) studied two groups of adolescents
with very low birth-weight. One group was cognit-
ively normal, while the second had a deficit just on
the numerical operations subtest of the WOND
(Wechsler, 1996). When the brains of these two
groups were compared, those with arithmetical
impairment had less grey matter in the left IPS. Of
course, we cannot say whether less grey matter in
the left IPS was a cause of poor arithmetic, or its
consequence.

Is there a specific genetic basis?

Kosc (1974), in one of the earliest systematic studies
of Developmental Dyscalculia (DD), proposed a role
for heredity. A recent twin study showed that for DD
probands, 58% of monozygotic co-twins and 39% of
dizygotic co-twins were also DD and that the con-
cordance rates were .73 and .56, respectively (Alar-
con, Defries, Gillis Light, & Pennington, 1997). In a
family study, Shalev et al. (2001) found that
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approximately half of all siblings of children with DD
are also dyscalculic, with a 5–10 times greater risk
than for the general population.

Children with Williams Syndrome, who have rel-
atively spared language abilities despite severely
impaired cognitive abilities, show abnormalities on
simple numerosity tasks such as number compar-
ison, and are also much worse on simple numerical
tasks such as seriation, counting, and single digit
arithmetic than chronological age- and mental-age
matched controls, and children with Down’s Syn-
drome (Paterson, Girelli, Butterworth, & Karmiloff-
Smith, submitted).

Some abnormalities of the X chromosome appear
to affect numerical capacities more severely than
other cognitive abilities. This is particularly clear in
Turner’s Syndrome where subjects can be at a nor-
mal or superior level on tests of IQ, language and
reading, but severely disabled in arithmetic (Butter-
worth et al., 1999; Rovet, Szekely, & Hockenberry,
1994; Temple & Carney, 1993; Temple & Marriott,
1998).

Conclusions

Table 1 summarises the principal milestones in the
development of arithmetic by age. There are no age
norms for the milestones described here, and the
ages are those at which most of the children tested
demonstrate these capacities with reasonable reli-
ability. Bear in mind that the studies described are
not focused on ages, but on stages; different children
can reach the milestones at very different ages.

The milestones are intended to be culture-free, but
the data comes from studies of children raised in
European and US contexts. There is evidence that
the structure of the number word system can speed
or slow the acquisition of arithmetical concepts, so
children raised in languages with a very regular
system, such as Chinese, acquire some arithmetical
concepts earlier (Butterworth, 1999; Nunes &
Bryant, 1996).

Broadly, then, the development of arithmetic can
be seen in terms of an increasingly sophisticated
understanding of numerosity and its implications,
and in increasing skill in manipulating numer-
osities. The impairment in the capacity to learn
arithmetic – dyscalculia – can be interpreted in many
cases as a deficit in the concept in the child’s concept
of numerosity. It is worth noting, however, that there
are several major gaps in our knowledge. The rela-
tionship between the earliest capacities shown in the
infant and later numerical competencies still needs
to be described in detail, especially in regard to the
emergence of the specialised left hemisphere brain
system. It is also not yet determined whether there is
a critical or sensitive period of acquiring arithmetical
concepts, and how this might interact with educa-
tional input.
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