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Abstract 

Number comparison is a task that has been widely used to in- 
vestigate the mental representation of number magnitudes. It 
is frequently assumed that the mapping from numerals to a 
"mental number line" is compressive (i.e., logarithmic) or 
that magnitude representations have the property of scalar 
variability. In this study, we simulate the process of selecting 
the larger of two numbers in a neural network model. We 
show that i t  is possible to account for the main experimental 
effects (e.g., the distance effect and the number size effect) 
with a simple architecture using a linear representation of 
numerical magnitudes. The compressive effects that are 
found in the reaction times emerge from the non-linear inter- 
actions that are intrinsic to the decision process. 

Introduction 
Number comparison is one of the fundamental numerical 
abilities. McCloskey (1992) takes the ability to select the 
larger of two numbers to be the criterion of understanding 
of numbers. Neurological patients who perform abnormally 
on this task, turn out to be profoundly acalculic (Delazer & 
Butterworth, 1997). Recent research on infant numerosity 
discrimination is consistent with the idea that infants can 
recognise which of two visual arrays contains the more ob- 
jects (e.g., Wynn, 1992). It is also known that some pri- 
mates, when presented with two visual arrays, can reliably 
select the array with more objects, for small numbers 
(Brannon & Terrace, 1998; Washburn & Rumbaugh, 1991). 

As with many stimulus dimensions, number size shows a 
symbolic distance effect. That is, it is easier and quicker to 
select the larger of two numbers when they are numerically 
dissimilar than when they are similar (Moyer & Landauer, 
1967). This "distance effect" has been found in young chil- 
dren (Sekuler & Mierkiewicz, 1977) and even in primates 
(Washburn & Rumbaugh, 1991; Brannon & Terrace, 1998). 
Thus, the ability to compare numerosities could be ontoge- 
netically and phylogenetically basic. 

According to McCloskey, Caramazza, and Basili's (1985) 
model, comparing the magnitude of two numerals requires 
the generation of an abstract representation corresponding 
to each numeral. However, the way in which the magni- 
tudes of these abstract representations are compared is an 
unspecified process. In Dehaene's (1992) triple-code model, 
number comparison is performed on the basis of an ana- 
logue magnitude code (Dehaene & Cohen, 1995). Again, 

the details of the comparison process operating on these 
codes is largely unspecified. In effect, number comparison 
has not been simulated to our knowledge within a computa- 
tional framework (but see Dehaene & Changeaux, 1993, for 
a simulation of the preverbal elementary ability to compare 
small sets of up to 3-4 objects). The serious limit of any 
verbal model of number comparison is that the comparison 
process itself and nature of the input-output representations 
on which this processes operates are not made explicit; the 
corollary to this fact is that the origin of the classic effects 
found in magnitude comparison tasks, such as the symbolic- 
distance and the number size effects, are still poorly under- 
stood. 

The symbolic-distance effect refers to the finding that the 
latency of the comparative judgement is an inverse function 
of the numerical distance between the two numerals. That is 
to say, it is easier (i.e., faster) to compare 3 and 5 than 3 and 
4. This classic result, indexed by the "split" or difference 
between the two numbers, has been found with arabic nu- 
merals (Banks, Fujii, & Kayra-Stuart, 1976; Buckley & 
Gillman, 1974; Duncan & MacFarland, 1980; Moyer & 
Landauer, 1976; Parkrnan, 197 1 ; Sekuler & Mierkiewicz, 
1977), patterns of dots (Buckley & Gillman, 1974), and 
written-word numerals (Foltz, Poltrock, & Potts, 1984). The 
number size (or serial-position) effect refers to the fact that, 
for a given symbolic distance, pairs of small numbers are 
compared faster than pairs of large numbers. Again, this is a 
classic result which has been observed with arabic numerals 
(Buckley & Gillman, 1974; Parkman. 1971), with patterns 
of dots (Buckley & Gillman, 1974), and with written-word 
numerals (Foltz et al., 1984). 

We present below a connectionist model of number com- 
parison, which can account for the main findings with a 
very simple processing architecture and a very limited set of 
basic assumptions. 

Representation of number magnitudes 
What representations are used in the comparison task to 
select the larger? The discoverers of the distance effect in 
numerical judgments, Moyer and Landauer (1967) state 
that "the decision process ... is one in which the displayed 
numerals are convened to analogue magnitudes, and a com- 
parison is then made between these magnitudes in much the 
same way that comparisons are made between physical 
stimuli such as loudness or length or line." (p. 1520). They 



carefully separate the process of conversion of symbols to 
analogue representations from the process of deciding 
which is the larger. It is frequently assumed, however, that 
the key parametric findings should attributed to the process 
of conversion alone. The rationale for this position is very 
clearly stated by Dehaene who, in a series of papers, argues 
that the mapping from numerals to the number line is non- 
linear. This is because the line is held to be compressive, 
that is obeying Weber-Fechner logarithmic law. Accord- 
ingly, the subjective difference,b&ween two numbers will 
depend on their positions on the line, that is, the subjective 
difference between N and N+l will be smaller as N in- 
creases (Dehaene, 1992; Dehaene, Dupoux & Mehler, 
1992). 

The similarity between numerical judgments and physical 
judgments has struck many other authors including Gallistel 
and Gelman (1992), who argue that the mechanism of 
comparing the magnitudes, again conceptualised as ana- 
logue, of two numbers is equivalent to comparing the 
lengths of two lines. However, their conception of analogue 
magnitude is subtly but importantly different from De- 
haene's. Gallistel and Gelman (1992) propose that the map- 
ping from number symbol (word or numeral) to the magni- 
tude representation is linear, not compressive, but the vari- 
ability of the mapping increases in proportion to the mag- 
nitude. For this reason, "the discriminability of the two 
numbers decreases as their mean numerical value increases, 
not because they are subjectively closer together, but be- 
cause the variability (noise) in the mapping is scalar." (p. 
57). 

Analogue representations, however, fail to capture our 
intuitive notion of whole numbers, and whole-number 
arithmetic. Perhaps because of our early experience with 
counting, we intuitively think of whole numbers as meaning 
not approximate analogue magnitudes, but discrete nu- 
merosities. 

In particular, we think of a whole number as denoting the 
numerosity (or cardinality) of a set with discrete members. 
Intuitively, we think of arithmetical operations on whole 
numbers in terms of sets and numerosities. For example, we 
think of the addition of x and y as being the numerosity of 
the union of two disjoint sets whose numerosities are x and 
y (Giaquinto, 1995). 

Our working hypothesis is, then, that number representa- 
tions are ordered by numerosity: smaller numbers denote 
proper subsets of the sets denoted by bigger numbers. No- 
tice that this hypothesis is not trivial. If we conceptualise 
numbers essentially as words, then they will not be intrinsi- 
cally ordered by numerosity magnitude; they will be instead 
be intrinsically ordered along some verbal dimension, such 
as the alphabet. Even ordinal numbers are not ordered by 
magnitude - the first past the post is not smaller than the 
second past the post, even though 1 is smaller than 2. 

Our principal question is which aspects of the comparison 
phenomena should be attributed to the representation of 
numerical magnitudes and which to the implementation of a 
decision process. The reaction time data for the judgement 
of physical magnitudes across a wide range of domains 
(e.g., line length, pitch, weight) are well represented by the 
equation proposed by Welford (1960): 

where L and S are the larger and the smaller physical 
magnitudes, respectively, and a and k are constants. The 
same equation has been found to be the best predictor of 
number comparison reaction time data, accounting for about 
50% of the variance (e.g., Moyer & Landauer, 1973; De- 
haene, 1989). Given this striking similarity, it is unclear 
why the experimental effects found in number comparison 
should be attributed to the representation of numerical 
magnitudes rather than to the decision process per se. 

This lead us to the issue of implementation. Within a con- 
nectionist framework, a two-choice decision process can be 
implemented by two nodes that compete with each other for 
responding to the input (e.g., Zorzi & Umilti, 1995). What 
is less straightforward, however, is how to represent num- 
bers as activation patterns over a set of processing units. 
The analogue "number line" hypothesis represents number 
magnitudes as points or regions on a continuous psycho- 
logical dimension. In one of the few attempts to model nu- 
merical processes in a neural network, that is McCloskey 
and Lindemann's (1989) model of multiplication facts re- 
trieval, numbers were encoded over an ordered sequence of 
input nodes, where each node stood for a particular number. 
Moreover, the two immediate neighbours of the number 
were activated as well: thus 5 was represented as the activa- 
tion of the node labelled "5" plus (lesser) activation of "4" 
and "6". Although this provides some ordering of numbers, 
"8" and "4", with no overlapping neighbours, would acti- 
vate orthogonal representations (i.e., nodes 7-8-9 for "8" 
and nodes 3-4-5 for "4"). McCloskey and Lindeman (1989) 
did not however attempt to model number comparison, and 
it is not clear how it would succeed in capturing the distance 
effect. In any event, this representation is very different 
from, and incompatible with, a numerosity representation 
(see Figure 1). 

Our approach is to represent numerosity magnitude 
straightforwardly as the number of units activated, such that 
bigger numbers include smaller numbers; therefore, for 
N>M, a set with M members can be put in 1-1 correspon- 
dence with a proper subset of the set with N members. This 
representational scheme is also known as a "thermometer" 
representation (see Figure 1, right panel). 



Numerosity magnitudes 

Figure 1: Alternative schemes for representing numbers (top row: 3; bottom row: 7). On the 
left is the McCloskey-Lindemann scheme in which an input number activates its own repre- 
sentation and, to a lesser extent, its immediate neighbours. On the right is our numerosity (i.e. 
the cardinality) representation, where each number is represented by a set of activated units 
corresponding to its numerosity. 

The numerosity representation just described has several 
advantages. First, it readily maps onto lower level percep- 
tual processes (e.g., object identification) and enumeration 
procedures (e.g., subitizing, counting). That is, each mag- 
nitude increment in our numerosity representation corre- 
sponds to the enumeration of a further element in the to-be- 
counted set. Second, it entails that larger numbers are more 
similar to each other than smaller numbers, without assum- 
ing a logarithmic compression, since large numbers share 
more active nodes. For example, 9 and 8 would share 8 
nodes, whereas 1 and 2 would share only 1 node. This can 
also be formalized in terms of the cosine of the angle 
formed by the vectors coding the two numbers. Finally, we 
do not assume that the variability of the mapping from sym- 
bols to magnitude representation increases with size as Gal- 
listel and Gelman (1992) proposed. Rather, the mapping in 
our scheme is linear and not noisy. 

Model of number comparison 

Architecture 
The model is implemented in a network, in which each node 
is associated with an activation value. Nodes are connected 
by weighted links, which may be excitatory (positive) or 
inhibitory (negative). 

We assume that number comparison is performed on the 
basis of magnitude, "semantic" codes (e.g., McCloskey et 
al., 1985; Dehaene, 1992). Therefore, this level of repre- 
sentation is used as input data for the model. The numbers 
to be compared are each represented by a set of 9 nodes, 
which are activated according to the "numerosity magni- 
tude" scheme discussed above. The representation of the 
two possible responses (left or right button-press, to indicate 
which of the numbers is the larger) consists of two nodes, 
which we call the "response system" (see Zorzi & Umilti, 
1995). Activation values of the input nodes (number mag- 
nitudes) are in the [0,1] range, whereas in the response sys- 
tem suppressed states (modelled as negative activations) are 
permitted. In this case the range of activation is [-1,1], but 
only positive activations propagate through the connections. 
At stimulus onset, the relevant input nodes are clamped to 
the " 1" value. 

The response system incorporates a competitive mecha- 
nism, that, via lateral inhibition, implements response com- 
petition (e.g., Zorzi & Umilti, 1995). Thus, the response 
system can be represented as a dipole, where two mutually 
exclusive responses compete: each response node has an 
inhibitory connection to the other node. The state of each 
response node changes smoothly over time in response to 
influence (of both excitatory and inhibitory kind) from the 
other nodes of the network (magnitude nodes for the two 
numbers, and the other response node). For simulation pur- 
poses, continuous time units can be approximated with dis- 
crete time units, in which time is discretized into ticks of 
some duration T. Therefore, the new state of each response 
node at time t + ~  is a weighted average of its current state at 
time t and the state dictated by its external input, according 
to the following equations: 

where a, is the activation level of the response node j, and 
netj  is the external input to j, and T is a parameter defining 
the weighting proportion that determines how gradually the 
state of the node changes over time. Note that q represents a 
small random noise, which gives the model non- 
deterministic (stochastic) properties. 

To bound the activation values in the range [-1.11, the 
function d x )  in (2) is a S-shaped squashing function 
(hyperbolic tangent): 

where A is a "temperature" parameter defining the sigmoidal 
shape of the function. The net input (external input) to the 
response nodes is given by: 

where u / ~  is the weight of the connection from the input 
node i to the response node j, o; is the output of the input 
node i, a,k is the activation of the other response node, and 



w is the weight of the inhibitory link from the other re- 
sponse node. Free parameters for all simulations reported in 
this paper: k 4 ,  ~=0.01,  q=random gaussian noise (mean = 
0, standard deviation = 0.01). 

After stimulus onset (i.e., activation of the relevant nu- 
merical magnitudes), the system is allowed to cycle until 
there is a winning node. We simply assume that a response 
occurs when the difference,-between.the activations of the 
two response nodes exceeds a certain threshold. The num- 
ber of cycles required by the system to settle represents a 
measure of the reaction time (RT) in responding to the 
stimulus. .,.' 

The connections linking the magnitude nodes for the two 
numbers with the response system are learnt in the model by 
simple association of the input with the required response. 
This is done in the model by simple "hebbian learning": a 
connection is strengthened if the activation of the nodes that 

it connects are correlated (e.g., both nodes are active). For- 
mally: 

where wq is the weight of the connection between the 
nodes i and j ,  and a, and a, are the activation values of the 
two nodes, and e is a small learning rate. 

Learning is done in a "one-shot" fashion, in the sense that 
the 72 possible input patterns (i.e., all combinations of two 
1-9 digits, excluding the ties) are presented just once, si- 
multaneously with the required response. The connections 
involved in the learning phase are those from the magnitude 
nodes to the response nodes. The model's architecture, with 
its nodes and connections, is depicted in Figure 2. Not sur- 
prisingly, the. connections linking uncorrelated nodes are not 
strengthened. 

Response System 

Left number Right number 

Figure 2: Architecture of the model. The connection linking the two response nodes is 
an inhibitory dipole implementing response competition. All connections from magni- 
tude representations to response system are excitatory. 

Results 
The model was presented with the numerosity representa- 
tions of all possible pairs of single digit numbers (1-9). Ac- 
tivation of the magnitude nodes propagates gradually to the 

! response nodes, and the model is allowed to cycle until re- 
', sponse criterion is reached, which consists in the difference 

of the activations of the two response nodes; we assume that 
a response can be unambiguously selected when this differ- 
ence becomes equal to [0.5] or bigger. At that point, the 
number of cycles needed by the system to reach response 
threshold is taken as a measure of the reaction time. Cru- 
cially, this will in turn depend on the amount of competition 
between the two nodes. Note that response competition is 

what accounts in general for the relevant part of empirical 
RTs, across domains as different as attention (e.g., Cohen & 
Huston, 1994; Houghton & Tipper, 1994; Zorzi & Umilti, 
1995) and reading aloud (e.g., Zorzi, Houghton, & Butter- 
worth, 1998). 

The presence of noise in the activation function of the re- 
sponse nodes implies that the model can exhibit a relative 
variability in the response times. Therefore, each pair of 
numbers is presented 100 times to the model, and a mean 
RT is computed for each pair. The mean RTs produced by 
the model are analysed by regressing the standard structural 
variables (the magnitudes of the two numbers, and their 
difference) onto them. The two main effects that are usually 
found in a number comparison task are the distance or 
"split" effect (i.e., RTs increase as the difference between 



the two numbers becomes smaller) and the number size the Welford function, i.e. Log (Larger-Smal1er)Larger)). 
effect (i.e., RTs increase as the size of the two numbers in- Used as a predictor of the model's RTs, the Welford func- 
creases). A variable that is standardly used to index the lat- tions accounts for 88.3% of the variance. As with human 
ter effect is the sum of the two numbers. A linear regression performance, the reaction times produced by the model are 
onto the model's RTs showed that the split accounts for sensitive to the difference between the two numbers (i.e., 
40.3% of the variance (p<.001) and the sum accounts for split) and to the overall size of the two numbers. The effect 
57.6% of the variance. A different variables that has been of the split can be seen more clearly in Figure 3. 
often reported as a good predictor of comparison times is 

split 

Figure 3: Graph shows the effect of the split (difference between the two 
numbers) on the number of cycles that the system needs to select a response. 

General Discussion 
We have modelled number comparison for the first time, 
and have done it in such a way that seems to capture out 
intuitive understanding of whole numbers. This shows that 
analogue representations of number magnitudes are not 
necessary to fit the data from comparison tasks, as has been 
often claimed. The crucial point, however, is that magnitude 
representations need not be compressed in order to observe 
a Weber-Fechner logarithmic effect in number comparison, 
contrary to the claims of Dehaene and his colleagues. In our 
simulation, numerals were mapped linearly on to magnitude 
representations, and the compressive effect on the compari- 
son times emerges by virtue of the non-linear interactions 
that are intrinsic to the decision process itself. The non- 
linear squashing function in the response units produces a 
compression of the input magnitudes which is larger for 
bigger numbers. It is also not necessary to postulate that 
magnitude representations have the property of scalar vari- 
ability, that is, that the standard deviation of mapping from 
numerals to magnitudes increases with the mean magnitudes 
of the numbers, as claimed by Gallistel and Gelman (1992). 

There are two main psychological advantages of linear 
mapping from number symbols to number magnitudes. For 
one thing, i t  corresponds to our intuitive notion that each 
counting increment when enumerating a set of objects is 
equivalent, regardless of the size of the set. Secondly, these 

magnitudes are appropriate for arithmetical operations on 
whole numbers. which are linear, whereas compressive rep- 
resentations would not be. As Gallistel and Gelman note, 
"the concatenation of mental magnitudes is isomorphic to 
addition of the corresponding values." (1992, p. 57). 
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