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Mapping Numerical Magnitudes Along the Right Lines:
Differentiating Between Scale and Bias

Vyacheslav Karolis, Teresa Iuculano, and Brian Butterworth
University College London

Previous investigations on the subjective scale of numerical representations assumed that the scale type
can be inferred directly from stimulus–response mapping. This is not a valid assumption, as mapping
from the subjective scale into behavior may be nonlinear and/or distorted by response bias. Here we
present a method for differentiating between logarithmic and linear hypotheses robust to the effect of
distorting processes. The method exploits the idea that a scale is defined by transformational rules and
that combinatorial operations with stimulus magnitudes should be closed under admissible transforma-
tions on the subjective scale. The method was implemented with novel variants of the number line task.
In the line-marking task, participants marked the position of an Arabic numeral within an interval defined
by various starting numbers and lengths. In the line construction task, participants constructed an interval
given its part. Two alternative approaches to the data analysis, numerical and analytical, were used to
evaluate the linear and log components. Our results are consistent with the linear hypothesis about the
subjective scale with responses affected by a bias to overestimate small magnitudes and underestimate
large magnitudes. We also observed that in the line-marking task, participants tended to overestimate as
the interval start increased, and in the line construction task, they tended to overconstruct as the interval
length increased. This finding suggests that magnitudes were encoded differently in the 2 tasks: in terms
of their absolute magnitudes in the line-marking task and in terms of numerical differences in the line
construction task.

Keywords: subjective scale, response bias, admissible transformations, central tendency effect,
logarithmic compression

It has long been noted that number processing reveals a striking
similarity to processing physical magnitudes (Moyer & Landauer,
1967; Restle, 1970). Both are subject to the distance effect; that is,
longer response times are required to distinguish between close
magnitudes than distant ones (Moyer & Landauer, 1967). Both are
also affected by the size effect; that is, it takes more time to
distinguish between large magnitudes relative to small magnitudes
when they are separated with the same numerical distance (Buck-
ley & Gillman, 1974; Parkman, 1971; Parkman & Groen, 1971).
Furthermore, converging evidence suggests a strong association
between small numbers and the left side of space and large
numbers and the right side of space (Dehaene, Bossini, & Giraux,
1993; Zorzi, Priftis, & Umiltà, 2002), which was interpreted to
mean that subjective number representations have an implicit and
unique spatial architecture (Hubbard, Piazza, Pinel, & Dehaene,
2005; Izard & Dehaene, 2008).

These findings justify the use of psychophysical methods in the
study of numerical cognition (e.g., Izard & Dehaene, 2008; Siegler
& Opfer, 2003) and raise the question about the internal (or
subjective) scale of numerical representations. A unifying frame-
work, accounting for the above phenomena, treats numerical mag-
nitude as a univariate random Gaussian variable (Izard & Dehaene,
2008; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004) that maps
in an increasing order from left to right onto a subjective contin-
uum: the “mental number line” (Dehaene, 1992). The distance
effect, then, is the result of an increasing overlap between distri-
butions for numbers with close magnitudes as compared with an
overlap between distributions for far magnitudes. Two hypotheses
were proposed to account for the size effect. According to one, the
scale of mental number line is logarithmically compressed (De-
haene, 2003). As a result of such compression, spacing between
two neighboring numbers should decrease with an increase of their
magnitudes, leading to a greater overlap of distributions. An al-
ternative hypothesis proposes that the subjective scale is linear but
the noisiness of mapping increases with number magnitude, also
leading to a greater overlap (Gallistel & Gelman, 1992; Whalen,
Gallistel, & Gelman, 1999).

Because both linear and logarithmic hypotheses can predict
similar outcomes (Dehaene, 2003), distinguishing between them is
a nontrivial empirical problem. An attempt to solve this problem
has been made by studies exploiting the number-to-location map-
ping paradigm. For example, Siegler and Opfer (2003) presented
participants selected from four age groups (second, fourth, and
sixth graders and adults) with a line labeled with “0” at one end
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and “100” or “1,000” at the other and asked them to mark on the
line the magnitudes of numbers contained within those intervals.
The study showed that the younger groups (second and fourth
graders) exhibited responses that were best modeled by a logarith-
mic function, whereas older children and adults used linear map-
ping. The authors suggested that children initially possess a loga-
rithmic subjective scale associated with a more primitive sense of
numbers (Dehaene, 1997), and that the scale becomes linear at
later stages of development through the use of counting series and
language.

There are a number of reasons why these findings may not be
conclusive. First, the study uses numerical intervals that are stan-
dards for the decimal counting and metric systems. These intervals
may be highly overtrained through education and life experience.
The near 100% of variance explained by the linear fit in adult data
suggests that the task was very easy, giving rise to a ceiling effect.
Second, it is possible that the access to the magnitude of a number
is not required for an adult to correctly perform in this task. In fact,
the problem can be solved algorithmically on the basis of precise
ordering provided by the counting system. For example, the inter-
val can be roughly partitioned into parts hallmarked by the mul-
tiples of 10, and the required number between them can be found
by interpolation.

Other studies suggest that a logarithmic component persists in
the subjective scale of adults if approximate estimation is required.
Thus, Dehaene, Izard, Spelke, and Pica (2008) asked participants
to rate the magnitude of a nonsymbolic numerosity (dots or tones)
on the line bracketed with either 1 and 10 or 10 and 100 dots. They
showed that small nonsymbolic numerosities up to 10 items, which
could be easily counted, were rated linearly. By contrast, rating
large nonsymbolic numerosities (10–100) exhibited a significant
logarithmic component, suggesting that the scale for approximate
estimation is not completely linearized.

The evidence for the logarithmic compression of nonsymbolic
magnitudes can also be found in dot enumeration. It has been
shown (Izard & Dehaene, 2008; Krueger, 1982) that mapping from
a number of dots to digits obeys Stevens power law (Stevens,
1957); that is, the relation between stimulus numerosity D and
participants’ response N is captured by a power function N � �D�,
with exponent � � 1. This form of mapping is consistent with the
idea that both dependent and independent variables are the loga-
rithmic interval scales (in other words, there is a linear relation
between their logarithms, log N � log � � � log D; see Luce,
1959, Theorem 9). Given that two logarithmic scales are required
for the power law to hold (if the magnitude encoded on the log
subjective scale was mapped directly into behavior, the response
function would be of the form N � � log D � �), Izard and
Dehaene (2008) proposed the following mechanism. At the first
stage, perceived numerosities are encoded on the log-scaled mental
number line. At the second stage, the analogue representations on
the mental number line are transformed into a response by means
of a response grid. The latter is also log scaled, but it can be
“calibrated” with respect to the mental number line with affine
transformations (stretch or shrink and shift), allowing for the
adjustment of response criteria as a result of a feedback, compar-
ison to a standard, etc.

Longo and Lourenco (2007) also demonstrated the presence of
a logarithmic component in the subjective scale in the estimation
of symbolic magnitudes. The novelty of their approach was to vary

the start of the interval and its length, making the task much more
challenging for participants when they needed to estimate the
interval midpoint. Assuming homomorphism between physical
and numerical magnitudes, the authors proposed that the bisection
of numerical intervals should be affected by “pseudoneglect.” This
phenomenon is characterized by the tendency, found in healthy
adults, to bisect physical lines to the left of the objective center (for
review, see Jewell & McCourt, 2000). Provided that pseudoneglect
represents an attentional bias of a constant strength, the authors
argued that the error in the interval bisection task (i.e., the under-
estimation of an interval mean) should depend on the magnitude of
this mean. Specifically, the authors predicted a greater underesti-
mation for the interval mean of a larger magnitude, as the distance
between large numbers on the logarithmic scale is smaller than
between small numbers, meaning that an attentional bias of a
constant strength should span a greater numerical distance. The
results confirmed the predictions, showing that the underestima-
tion of the interval mean increased with its magnitude. In another
study, Lourenco and Longo (2009) administered a similar task, this
time also asking participants to retain in memory small or large
numbers presented in the beginning of each trial. When partici-
pants retained a small number, the modulation of the bias by
number magnitude persisted; when participants memorized a large
number, no modulation was found. Following Banks and Coleman
(1981), Lourenco and Longo (2009) proposed that the use of either
logarithmic or linear scale may depend on the specifics of a
numerical problem at stake.

Methodological Issues

Although the previous research provided evidence in favor of
both linear and logarithmic hypotheses, there are reasons to believe
that the methodology used in the study of subjective number
scaling is problematic. First of all, the presence or absence of a
log-like nonlinearity of the trend does not generally guarantee the
presence or absence of a logarithmic component in the subjective
scale. In the number line tasks (Barth & Paladino, 2011; Moeller,
Pixner, Kaufmann, & Nuerk, 2009; Siegler & Opfer, 2003), this
problem is reflected by an ongoing discussion about the function
that should be used to fit the data of young children. For example,
Moeller et al. (2009) suggested that the nonlinearity is better
modeled by a segmented linear regression line. More recently,
Barth and Paladino (2011) showed that the performance in the task
can also be accounted for by Spence’s power model of propor-
tional judgments (Spence, 1990). The model predicts that the
proportion P of some unit magnitude (e.g., length of a line or the
length of numerical interval) will be overestimated if P � .5 and
underestimated if P � .5. The predicted response function for the
model is not linear, though, as the over- and underestimation starts
converging monotonically to zero for extreme values of P (i.e.,
P 3 0 or P 3 1).

The same problem applies to the dot enumeration studies. There
is no objective reason (see Luce, 1959, Theorem 1) for assuming
the hypothesis of logarithmic interval scales (as in Izard & De-
haene, 2008) to interpret the data, given a basic principle under-
pinning the power law. According to the law, subjects use ratio
scaling, where equal stimulus ratios tend to produce equal sensa-
tion ratios (Stevens, 1957). Given that the exponent in dot enu-
meration tasks is less than 1, it means that each time the number
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of dots is doubled, an estimate increases less than twice. Moreover,
there is a discrepancy between the results in the dot enumeration
and line-mapping tasks, given that in the former the response
function is a power one, whereas in the latter it is a linear
combination of the linear and logarithmic components (Dehaene et
al., 2008). This implies a different estimation mechanism in the
line-mapping task, as the response here is no longer calibrated with
the log-scaled response grid (a second log scale is necessary for the
power law to hold).

Another problem is that the previous studies assumed that any
trend observed in the responses follows solely from the idiosyn-
crasies of the subjective scale. However, this is not a valid as-
sumption, as some systematic tendencies may result from response
biases. One of these biases, the central tendency effect, was
branded by Stevens (1971) as “one of the most obstinate” and
“perhaps most important” (p. 428). It was first described by
Hollingworth (1910), who found that judgments of physical mag-
nitudes reveal a tendency to “gravitate toward a mean magnitude”
(p. 461) of a series of presented stimuli, termed by him the
indifference point. In other words, the stimuli of small magnitudes
tended to be overestimated, and the stimuli of large magnitudes
tended to be underestimated. The indifference point is not neces-
sarily equal to a linear mean of the series. Helson (1947) argued
that central tendency represents the pooled effect of all stimuli.
Consequently, if the magnitudes of stimuli are represented on the
compressive scale, the indifference point will be close to a geo-
metric mean of the series; that is, its proportional magnitude to the
range of series will be greater than that of an arithmetical mean.

The relevance of the central tendency issue for the study of
number magnitude scaling is implied by two facts. First, the
central tendency forces the response function to be less steeply
increasing. For a cross-modal matching paradigm (e.g., dot enu-
meration), it means a smaller value for the exponent of power
function. Because the “true” exponent is not available, the infer-
ence based solely on the analysis of exponent values (as is the case
in Izard & Dehaene, 2008) may be inaccurate. Second, the central
tendency may provide an alternative interpretation for compressive
signatures found in the studies by Longo and Lourenco (2007;
Lourenco & Longo, 2009). It is not clear whether the change in the
size of the bias with number magnitude, reported in those studies,
resulted from logarithmic spacing between magnitudes on the
underlying mental continuum or from a tendency to overestimate
small numbers and underestimate large numbers. In other words, a
weaker pseudoneglect, found for the small magnitude of an inter-
val mean, could also occur if the underestimation due to pseudone-
glect was counterbalanced by the response bias to overestimate
small numbers; and conversely, a greater pseudoneglect for the
large magnitude of the mean could be a sum of pseudoneglect and
the response bias to underestimate large numbers.

Given that behavior may be affected by various distorting pro-
cesses, such as the central tendency or any other form of response
bias, the type of subjective scale cannot be determined by simply
asking people to estimate the stimulus magnitude (Gallistel &
Gelman, 2005; Stevens, 1971). To address this issue, it is neces-
sary to consider which criteria are used to determine the type of
scale. The theory of measurement proposes that the type of scale
is defined by the transformational rules according to which a
number gets its assignment (Luce, 1959; Stevens, 1951, 1968).
That is, a magnitude N on a particular scale can be constructed by

applying those transformational rules to an arbitrary set of other
magnitudes. For example, the characteristic feature of the loga-
rithmic scale is that log A � log B � log AB, whereas for the linear
scale that is not an admissible transformation (Luce, 1959), be-
cause A � B � AB does not hold, unless A � 0 and B � 0.

Taking admissible transformations as a criterion defining the
scale leads to the consistency principle (Luce, 1959): If the ma-
nipulations on stimulus magnitude are closed under a specific
transformation, then the behavioral outcomes should also be closed
under a specific transformation, though not necessarily the same
one. That is, to determine whether the subjective scale is log or
linear, one needs to determine whether behavioral outcomes in
response to combinatorial operations with stimulus magnitudes are
closed under the transformations admissible for the logarithmic
scale. The critical point is that without combinatorial operations, it
is not possible to tell whether the subjective scale is log or linear
on the basis of the observed behavior in any mapping task. A log
subjective scale could result in a linear mapping to a physical
continuum by a log-to-linear transformation in the response gen-
eration process; similarly, a linear subjective scale could equally
result in a log external mapping by a linear-to-log transformational
process.1

Combinatorial Method

The main aim of the study was to present a method for differ-
entiating the hypotheses of linear and logarithmic mapping for
numerical magnitudes while controlling for response bias. We
apply this method to the data obtained using modified versions of
the number-to-position paradigm. Participants were required either
to indicate the relative position of a number within a numerical
interval by marking a physical line (the line-marking task, Exper-
iment 1) or, given the segment of an interval, to extend the
physical line to fit the length of the whole interval (the line
construction task, Experiment 2). The numerical start and length of
an interval were varied. Thus, in the line-marking task (see Figure
3), the problem participants could face would be marking the
location of the number 23 within an interval bracketed by 12 on
one side and 45 on the other. A correct location would be, then, a
third of the line from the end bracketed by 12. In the line con-
struction task, the problem was somewhat different. Participants
would be presented with a physical line bracketed by 12 and 23,
and they would be required to extend the physical line such that it
would correspond to the length of the interval from 12 to 45. We
presented the intervals in two orientations: left to right (L-R) and
right to left (R-L). The hypothesis of an obligatory L-R mapping
on the mental number line suggests that the performance for the
R-L orientation should be less accurate as a result of costs asso-
ciated with remapping of a R-L interval on the L-R mental con-
tinuum. The change in the parameters of a response function is also
a possibility.

In our study we consider three hypotheses: (a) strong linear (i.e.,
the subjective scale is linear), (b) strong logarithmic (i.e., the
subjective scale is logarithmic), and (c) weak logarithmic (i.e., the
subjective scale is partly linearized but contains a significant

1 We are grateful to one of the reviewers for insisting on this point,
which seems to have been ignored by many researchers.
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logarithmic component). To make explicit the combinatorial op-
erations underlying the method, let us define two numbers brack-
eting a numerical interval as Start and End and a number falling
within this interval as Target. (The constraint that Target should lie
between Start and End in its numerical value applies to the line-
marking task only, but the predictions for the line construction
task, where the Target magnitude falls outside that interval, are
identical, with the only difference that the labels Target and End
are swapped.) Next, we express each stimulus magnitude as the
arithmetical sum of two numbers. Taking S as a distance between
Start and 0, and L and T are some arbitrary scalar magnitudes, such
that 0 � T � L, we define

Start � 0 � S � S

End � L � S

Target � T � S. (1)

The question we want to address now is, What is the form of
the admissible transformations on the subjective scale that
would account for the position of Target within the interval
bracketed by Start and End, given the combinatorial operations
with stimulus magnitudes, listed in Equation 1? First of all, the
position of a Target magnitude within an interval is given as a
relative distance between Target and Start to the length of the
whole interval, that is,

Target �Start-End� �
f 	Target
 � f 	Start


f 	End
 � f 	Start

, (2)

for some scaling function f. We will use the convention of adding
the subscript to a variable to denote its relative position within an
interval bounded by variables in the subscript brackets as opposed
to the absolute value of that variable.

For the linear mapping function, Target[Start-End] becomes

lin Target �Start-End� �
T � S � S

L � S � S
�

T

L
. (3)

That is, lin Target[Start-End] does not depend on the start S of the
interval but only on the relative magnitude of T to the interval
length L. In addition, lin Target[Start-End] is not affected by the
length of the interval as long as the proportion between T and L is
preserved.

For the strong logarithmic hypothesis, Target[Start-End] becomes

log Target �Start-End� �
log	T � S
 � log	S


log	L � S
 � log	S

�

log�T � S

S �
log�L � S

S �

�

log�T

S
� 1�

log�L

S
� 1� . (4)

From the above expression, it can be seen that S does not cancel
out; therefore, log Target[Start-End] depends on where the interval
starts. In addition, the premultiplication of T and L by a common
factor n does not imply that log Target[Start-End] remains the same.

That is, log Target[Start-End] will depend on how wide the interval
is, even though the linear proportionality between T and L is
preserved.

Finally, the weak logarithmic hypothesis suggests that mapping
is partially linearized but preserves a log component. Conse-
quently, the relative distance is obtained by summing nominators
and denominators of linear and log Targets[Start-End], that is,

lin log Target �Start-End� �

w1T � w2 log�T

S
� 1�

w1L � w2 log�L

S
� 1� , (5)

where w1 and w2 are the weighting parameters for the linear and
logarithmic components, respectively. In general, the term linear-
ization of number representations implies that the size of the
logarithmic component decreases as the size of the linear compo-
nent increases. Consequently, all three hypotheses can be ex-
pressed by means of a single expression,

Target �Start-End� �

wT � 	1 � w
log�T

S
� 1�

wL � 	1 � w
log�L

S
� 1� , 0 � w � 1,

(6)

where linear and logarithmic components form a convex combi-
nation.2 The weighting parameter w determines the identity of the
scale, such that the strong linear hypothesis corresponds to w � 1;
the strong logarithmic hypothesis corresponds to w � 0; and the
weak log hypothesis, because n �� log n, corresponds to w �� 1.
The critical point is that Equation 6 represents a general case for
admissible transformations on the subjective scale, under which
the arithmetical operations with stimulus magnitude, listed in
Equation 1, are closed. That is a direct implementation of Luce’s
consistency principle (Luce, 1959).

We assume that an estimate of a Target[Start-End] is subject to
random Gaussian noise and is mapped into behavior via some
response function with coefficients B � {�i}. For the purposes of
the current study, we assume that the response function is linear,
that is,

Response � �1Target �Start-End� � �0. (7)

In what follows, we will address the model given by Equations 6
and 7 as the full model and the model given by Equations 3 and 7
as the linear model.

It is easy to see why the method is well posed for differentiating
between the subjective scale and the response bias. For a particular
value w, we can construct some arbitrary Target[Start-End] in a
multiple ways using two or more sets of values for S, T, and L.

2 An alternative formulation for the weak hypothesis as Target[Start-End] � w
lin Target[Start-End] � w log Target[Start-End] appears to be conceptually inap-
propriate. It would imply that the estimation of a Target position within an
interval is performed twice, on the linear and log scales separately, and the
result is then determined by mixing the results of two estimations proportion-
ally to the weight w. In other words, this formulation would imply that two
independent scales are used concurrently.
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Every such set will generate a different Target[Start-End] for a
different value of w (i.e., on a different scale). Owing to multiple
assignments, the method does not confound magnitude informa-
tion contained in Target[Start-End] with B. The latter provides the
estimation for the size of response bias that, by definition, should
be indifferent to the combinations of S, T, and L as long as they
produce the same magnitude of Target[Start-End]. Obviously, ma-
nipulations with any two of the triplet S, T, and L, while keeping
a third one fixed, would suffice to generate an infinite number of
a particular Target[Start-End] replications. This implies that orthog-
onal manipulations with any two variables (or, alternatively, with
their sums, products, etc.) are both necessary and sufficient for
discriminating between the linear and log hypotheses experimen-
tally.

By contrast, the studies that used the standardized intervals (e.g.,
Dehaene et al., 2008; Siegler & Opfer, 2003) could not decouple
the contributions of response bias and weights to the values of
regression coefficients, as there was only one way to assign the
magnitude of Target[Start-End]. Longo and Lourenco (2007) appar-
ently came closer than others to a realization of the combinatorial
method when they manipulated the beginning and the length of the
interval. However, they did not make use of the method, taking
into consideration only one variable: the magnitude of the interval
mean.

The above formulation allows for two approaches to the data
analysis. First, the contribution of the logarithmic component can

be estimated directly by optimizing the model given by Equations
6 and 7. The second approach is analytical and provides a broader
picture about the factors affecting the performance. The geometric
interpretation of this idea is given in Figures 1A and 1B. We will
drop the symbolic notation of Equation 6 and, instead, use the
labels that define features of a numerical interval. The way S, L,
and T were defined implies that S stands for the magnitude of an
interval Start, L stands for a linear Length of the interval, and T/L
stands for a linear Target[Start-End]. The primary concern here is
how the difference between log and linear Target[Start-End] will
change for different choices of Start, Length, and linear
Target[Start-End]. The examples in Figure 1C indicate that the dif-
ference between log and linear Target[Start-End] is greater (a) for the
values of linear Target[Start-End] between .1 and .6, (b) for the
intervals with a smaller Start, and (c) for the intervals with a
greater Length. Furthermore, we can marginalize the effect of each
variable by averaging across the other two. Figure 2A shows the
marginalized difference between log and linear Target[Start-End] for
different values of linear Target[Start-End], and Figure 2B shows that
for different interval Starts and Lengths. All functions are nonlin-
ear, but their linear approximations have distinctive slopes. The
predominantly decreasing trend for linear Target[Start-End] and the
ever-decreasing trend for Start can be approximated by a line with
a negative slope, whereas the increasing trend for Length can be
approximated by a line with a positive slope. Importantly, for
mappings that are partially linearized, the sign of slopes for all

Figure 1. (A) Placement on the logarithmic scale at different Starts and different interval Lengths. Bars
represent numerical distances: from Start to Target (in black) and from Start to End (in gray). The length of black
bars relative to the length of gray bars on the linear scale would always be .5. However, it is not the case for the
logarithmic scale, as can be seen in Figure 1B. Interval c (greater Start and smaller Length) matches the linear
proportion most closely. (C) The change in the difference between log and linear Target[Start-End] with the change
in linear Target[Start-End], Start. and Length. The scale of axes is normalized (both linear and log Target[Start-End]

are proportional magnitudes). In the legend, the first digit stands for Start (i.e., the beginning of an interval), and
the second digit stands for End (i.e., the end of an interval). Individual curves provide a 2 � 2 example of four
intervals, with two choices for Start (small: 5; large: 45) and two choices for Length (small: 20 � 5 � 15; 60 �
45 � 15; large: 60 � 15 � 55; 100 � 45 � 55). On average, the difference between log and linear
Target[Start-End] is larger for linear Target[Start-End], between .1 and .6, for small Start (5) and for large Length (55).
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variables remains unchanged, though the steepness of the trends
will depend on the relative contribution of a logarithmic compo-
nent. Moreover, the sign of slopes for Start and Length would
remain unaffected by response bias (i.e., when �0  0, �1  1).

Consequently, a simple tool for testing both the weak and strong
logarithmic hypotheses can be the following. Provided that linear
Target[Start-End], Start, and Length are uncorrelated or orthogonal,
the deviations of the response from a correct value can be fitted
with linear multiple regression. If numbers are represented on a
(partially linearized) logarithmic scale, the regression coefficients
for linear Target[Start-End] and Start are expected to be negative,
whereas for Length they are expected to be positive.

Experiment 1: Line-Marking Task

In the first experiment, we implemented the combinatorial
method in a task that required mapping numbers to a location on

the line. We systematically manipulated parameters S, L, and T/L
(experimental variables Start, Length, and linear Target[Start-End])
and used both numerical and analytical approaches to the data
analysis. In addition, using a Bayesian statistical approach, we
compared the full model of Equations 6 and 7 with the simpler
linear model of Equations 3 and 7.

Method

Participants. Twenty healthy adults (10 men, 10 women)
19–40 years of age (M � 24.1, SD � 5.33) participated in the
study. They all gave informed consent, had normal or corrected-
to-normal vision, and declared themselves to be right-handed.

Stimuli and apparatus. The line-marking task was admin-
istered by means of a custom-made MATLAB program and dis-
played with a 19-in (48.26-cm) LCD monitor (1440 � 900 pixels;
pixel size � .265 mm). All stimuli in the experiment were de-
signed in terms of a pixel size. Participants saw a gray 15-pixel-
wide line presented against a black background in the middle of
the screen along the vertical axis (see Figure 3). Along the hori-
zontal axis, the location of the line center varied randomly within
50 pixels off the monitor center in either direction. The length of
the line varied randomly between 480 and 520 pixels, subject to
constraints discussed below. A thin red vertical strip (1 pixel thick,
31 pixels long), functioning as a cursor, was presented simultaneously
with the line. The cursor split the line into two parts, and on presen-
tation it could occupy any randomly selected location between the
ends of the line. The cursor displacement, constrained to the horizon-
tal dimension, was manipulated by a computer mouse. The trial was
terminated by clicking the left button of the mouse. The location of
the cursor at the time of the click was registered and used to calculate
accuracy of the response. The resolution of the response was equal to
the pixel size (.265 mm).

In each trial, participants saw three numbers (font size � 20).
Two of them (in white) were presented at the opposite ends of the
line. A smaller number, Start, signified the beginning of an inter-
val, and a larger number, End, signified the end of the interval. A
number to be marked, Target (in red), lay between Start and End
in its numerical value. The orientation of the line could be either
left to right (L-R) or right to left (R-L). In the L-R condition, a

Figure 2. The predictions for logarithmic mapping. (A) The marginal
difference between log and linear Target[End-Start] for nine choices of linear
Target[End-Start] (1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5) averaged across five Starts
(5, 15, 25, 35, 45) and five Lengths (15, 25, 35, 45, 55). The range of values
approximates that used in the study (see Method sections). The y-axis is a
normalized scale. The predicted trend is predominantly decreasing. The
gray line shows the linear approximation to the trend. (B) Marginal
difference between log and linear Target[End-Start] as a function of Start and
Length. The labels for the x-axis show numerical magnitudes for Start and
Length; the y-axis is a normalized scale. The choices for Start, Length, and
linear Target[End-Start] are as in Figure 2A. For Start, the marginal difference
is calculated by averaging across Length and linear Target[End-Start]. For
Length, the marginal difference is calculated by averaging across Start and
linear Target[End-Start]. Logarithmic mapping predicts a decreasing trend for
Start and an increasing trend for Length. The gray lines show their linear
approximations. For mapping, which is partially linearized or affected by
the central tendency, the steepness of the trends for Start and Length will
be smaller, but the directions remain unchanged.

Figure 3. Stimuli in the line-marking task. Participants are required to
mark the location of the gray number (red in actual experimental settings)
within the interval defined by the two white numbers by sliding the cursor
(vertical strip) along the line. At the beginning of each trial, the cursor was
presented at a random location on the line.
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Start was presented at the left end of the line and an End at the right
end. The layout was reversed for the R-L condition.

Design. Three numerical factors were manipulated in the
task: (a) linear Target[Start-End] (i.e., the relative distance between
Start and Target to the length of the interval), (b) Start (i.e., the
origin of the interval), and (c) Length (i.e., the length of the
interval). These variables corresponded directly to the values of
T/L, S, and L, respectively, used in the description of the combi-
natorial method. The choice of a Target magnitude was such that
it divided the interval proportionally into one of nine linear
Target[Start-End] values: 1⁄5, 1⁄4, 1⁄3, 2⁄5, 1⁄2, 3⁄5, 2⁄3, 3⁄4, 4⁄5.

The experiment had a blocked design. In the Start-controlled
block, the values for Start were drawn at random from one of the
“bins”: 1–9, 11–19, 21–29, 31–39, and 41–49. A Start from each
bin was presented once with each linear Target[Start-End]. The
assignment of Length was random in this block but was subject to
two constraints. First, the value for Length was within the range
between 10 and 60. Second, a numerical interval initially gener-
ated by the computer program was corrected to the nearest value
divisible without remainder by the denominator of a linear
Target[Start-End]. The reason for using the latter constraint was to
ensure that Target was always an integer.

In the Length-controlled block, a Length from each bin was
presented once with each linear Target[Start-End]. The bins for
Length were 11–20, 21–30, 31–40, 41–50, and 51–60. Again, the
adjustments of Length magnitude were required to ensure that the
value of Target was an integer. The assignment of Start was
random in this block, but its magnitude was contained in the range
between 1 and 49, excluding the multiples of 10.

The final constraint in stimulus generation relates to the
length of the presented line. Although the length for the line
was drawn in the first instance from the uniform distribution to
be between 480 and 520 pixels, the length of an actually
presented line was adjusted to a nearest value, such that the line
would contain a number of pixels divisible by the denominator
of a given linear Target[Start-End] without remainder. This al-
lowed for a precise marking of the line with respect to a
required linear Target[Start-End].

Given the 2 � 2 design (L-R or R-L orientation by Start-
controlled or Length-controlled block), the task consisted of four
blocks of 45 trials (nine levels of Target[Start-End] times five levels
of Start/Length) each. Both within- and between-block orders of
presentation were randomized.

Procedure. Participants were shown the stimulus material,
explained the task, and instructed how to respond. They were
asked to provide an approximate and unspeeded estimate of the
position of the Target number on the line without performing exact
arithmetical calculations. In order to respond, participants were
required to move the cursor along the line to an estimated location
and mark the line by clicking on the left button of the mouse.
Participants were asked not to hurry or spend too much time on a
trial. As guidance, the time interval of 5–10 s per trial was
suggested. However, it was made clear that this time window was
not obligatory. Participants also underwent a training session to
become familiar with the tasks. The training session involved a
different set of linear Target[Start-End] values—namely, 1⁄7, 2⁄7, 5⁄7,
and 6⁄7—and consisted of two (L-R and R-L) blocks, where each
linear Target[Start-End] was presented twice within each block,
giving eight trials in the session. Both Start and Length were drawn

randomly. Each block in the experimental session was preceded by
a message on the screen specifying the orientation of the line.

Data analysis. The responses were normalized by calculating
them as proportions of the line segment between the beginning of
the line and the marked point divided by the length of the whole
line. This transformation placed responses onto identical scale with
linear Target[Start-End] and allowed for a straightforward calcula-
tion of the error as a difference between response and linear
Target[Start-End]. Three main issues were addressed in the analysis:
(a) the selection of a model for the data, (b) the response bias, and
(c) the marginal effects of linear Target[Start-End], Start, and Length.
Within each subsection, the effect of orientation was also investi-
gated.

Model selection. The parameters for the full model given in
Equations 6 and 7 were calculated for each subject and for each
orientation separately. The magnitudes of Start, Length, and the
difference between Start and Target were plugged into Equation 6
in place of S, L, and T, respectively. Values for �0, �1, and w were
calculated according to the least squares criterion, with an optimi-
zation algorithm (function fmincon in MATLAB). The initial val-
ues for �0, �1, and w were set to 0, 1, and 0, respectively,
corresponding to a null hypothesis that the subjects responded in
accordance with the strong logarithmic hypothesis and a zero
response bias. It should be stressed that a traceable logarithmic
component would require a small value for the weight w (roughly,
smaller than .1), given that log(n) �� n.

To evaluate the performance of the full model, we compared it with
the linear model, given by Equations 3 and 7, which is just a linear
regression model with the linear Target[Start-End] as a predictor. To
approximate the posterior distribution of the parameters �0, �1, and w,
we drew 10,000 Markov chain Monte Carlo parameter samples for
each model, subject, and orientation, dropping the first 500. The
proposal distributions were assumed to be Gaussian. To correct for a
small proportion of the interval between 0 and 1, for which parameter
w implies a traceable contribution of the logarithmic component, we
used an inverse arcsine transformation of the form w � [sin(w�) �
1]2, and sampled w� instead of w. The value of the parameter w� was
bound to be between 0 and �/2; the values that were sampled outside
that interval were reflected back into the interval. Owing to the
transformation, the proportion of the interval between 0 and �/2 that
was compatible with the log hypothesis was roughly .5. We calculated
the log of the marginal likelihood, L(model), for each model by
transforming logarithmically the average likelihood over all Markov
chain Monte Carlo samples. The differences in the logs of average
likelihoods for two models, L(linear) � L(full) (i.e., the logs of the
individual Bayes factors between the models), was then tested against
zero with nonparametric Wilcoxon signed-rank test. The values
greater than 0 would support the hypothesis of the linear scaling, and
the values smaller than 0 would support the logarithmic hypothesis.
The cross-subject log of the Bayes factor was calculated by summing
the individual logs. Similarly, the effect of the line orientation was
studied by looking at the Bayes factor between L-R and R-L condi-
tions.

Analysis of bias. Two parameters were of interest in the
analysis of response bias. The first was the slope �1 of the full
model (or of the linear model, if it performed better than the full
one), which can be treated as a spread–compression index. For
example, a value smaller than 1 would imply that the spread of the
mean responses was smaller than it was required by the variance in
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Target[Start-End] of Equation 6, and therefore some values should be
either overestimated or underestimated, or both. The test of the
slopes against 1 was complemented by the test suggested in
Matthews and Stewart (2009). This required testing the standard
deviation of responses against the standard deviation of indepen-
dent variable. In some respect, this test is more robust, as it takes
into account the within-subject variability of responses.

The second parameter of interest was the value of the regression
models at Target[Start-End] � .5 (i.e., the regression mean). This
parameter provided information about the symmetry of the
compression–stretch and can be interpreted as a marker of global
under- or overestimation. For regression slopes that were smaller
than 1 (compressed responses), the regression mean below .5
would indicate that there was a tendency to underestimate in
general, and vice versa if the mean value was above .5.

The effect of linear Target[Start-End], Start, and Length. We
used the multiple regression analysis with Start, Length, and linear
Target[Start-End] as predictors to obtain the estimation of the mar-
ginal effect of each variable on the performance. The dependent
variable of the analysis was the error, calculated as a difference
between response and linear Target[Start-End]. The betas for ran-
domly generated variables (i.e., Start and Length in the Length-
controlled and Start-controlled blocks, respectively) were disre-
garded. Consequently, we analyzed two samples of beta values for
Start (L-R and R-L in Start-controlled condition) and Length (L-R
and R-L in Length-controlled condition) and four samples of betas
for linear Target[Start-End] (L-R and R-L in both Start- and Length-
controlled conditions). The significance of a trend was established
by testing betas for each variable against zero with t-test statistics.
In addition, betas for the L-R and R-L conditions were tested
against each other, in order to see whether manipulations with the
line orientation had any effect on the data.

Results

Fifty-two trials (1.4%) were excluded from analysis, either
because reaction time was less than 200 ms (16 trials) or because
the deviation from a correct response was more than .4 (36 trials).

Model selection. The estimated median weight w for the full
model was equal to 1 (all w � .27). The linear model provided a
better account for the data than the full model, as the median log
of the Bayes factor was significantly greater than zero (L-R: z �
2.69, p � .01; R-L: z � 2.17, p � .03). The results were supported
by the analysis on the basis of Akaike information criterion,
calculated for the numerically optimal models (L-R orientation:
z � 3.92, p � .001; R-L orientation: z � 3.88, p � .001). The
cross-subject log of the Bayes factor was equal to 4.95 and 3.78 for
L-R and R-L orientations, respectively, implying very strong ev-
idence in favor of the linear hypothesis. The effect of orientation
was not significant (z � 1 for both the full and linear models,
confirmed by Akaike information criterion). The linear model
accounted for 75% of variance for L-R orientation and 76% of
variance for R-L orientation.

Analysis of bias. Because the linear model predicted the data
better than the full model, we used this model for the analysis of
response bias. The average response function was Response(L-R) �
.816 � Target[Start-End] � .106 and Response(R-L) � .821 �
Target[Start-End] � .108 for L-R and R-L orientations, respectively
(see Figure 4). The slopes of the regression models fitted to each

subject data were significantly smaller than 1, tL-R(19) � 5.15, p �
.001, and tR-L(19) � 5.02, p � .001, indicating the presence of the
central tendency bias in the data. The slopes for L-R and R-L
orientations did not differ from each other (t � 1). The alternative
test for the central tendency (Matthews & Stewart, 2009) showed
that participants’ standard deviations of responses were signifi-
cantly smaller than the standard deviations of linear Target[Start-

End] values, tL-R(19) � 2.40, p � .027, and tR-L(19) � 2.41, p �
.026.

The regression means were slightly greater than .5 (L-R: .51;
R-L: .52). Because of the small between-subjects variability, the
difference from .5 was statistically significant, tL-R(19) � 3.36,
p � .005, and tR-L(19) � 2.86, p � .01, which indicate some
tendency to globally overestimate. There was no difference in
regression means for L-R and R-L orientations.

The effects of linear Target[Start-End], Start, and Length.
The marginal error in responses, calculated for each experimental
variable by averaging across the others, is shown in Figure 5. The
values for both Start and Length are arranged into five bins to
enable averaging across participants. The multiple regression anal-
ysis, meanwhile, was run on the actual numerical magnitudes for
these variables.

As would be expected from the fact that the slopes of linear
models were considerably smaller than 1, there was a significant
negative trend in errors as a function of linear Target[Start-End]:
Start-controlled, L-R: t(19) � 4.81, p � .001, R2 � .20;3

Start-controlled, R-L: t(19) � 5.40, p � .001, R2 � .18; Length-
controlled, L-R: t(19) � 5.07, p � .001, R2 � .18; Length-
controlled, R-L: t(19) � 4.26, p � .001, R2 � .16. The average
sample slopes were �L-R/Start � �.190, �L-R/Length � �.202,
�R-L/Start � �.187, and �R-L/Length � �.160. A repeated measures

3 We calculated R2 using linear models with each variable separately as
a predictor to fit the data.

Figure 4. Line-marking task results. The group means and their standard
deviations of responses with the linear Target[Start-End] as a predictor.
Figure 4A shows that the slopes of linear regression models are signifi-
cantly smaller than 1, indicating the presence of linear compression in the
data, that is, a central tendency. Figure 4B shows the bars for the regression
means. The latter were slightly greater than the middle of the interval for
both line orientations, suggesting a small overall overestimation. L � left;
R � right.
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2 � 2 analysis of variance on betas (block: Start/Length; orienta-
tion: L-R/R-L) showed no significant main effect or interaction (all
Fs � 1.6). There was a remarkable consistency in the beta values
at a within-subject level, with correlational coefficients between
betas for different blocks ranging from .62 to .81. In addition, there
was a strong negative correlation between betas and R2 estimated
for the linear model (see the previous subsection; all � � .52, p �
.001 [nonparametric Kendall’s test]).

Testing the betas for Length against zero revealed no significant
trend (t � 1 for both L-R and R-L), whereas the trend for Start was
significant for both orientations, t(19) � 3.38, p � .01, R2 � .06,
and t(19) � 2.64, p � .016, R2 � .02, for L-R and R-L, respec-
tively. As Start increased, the error grew positively with the mean
rate �L-R � .012 and �R-L � .006 per 10 number units. The
positive value was found in 29 out of 40 cases (20 participants by
two line orientations). The magnitude of the effect was somewhat
greater for L-R than for R-L, with a marginally significant differ-
ence between two orientations, t(19) � 1.97, p � .06. Despite this
difference, there was a significant correlation between individual
betas for L-R and R-L (r � .48, p � .032), suggesting that the
effect (unlike the effect of Length, p � .19) was consistent at a
within-subject level.

Discussion

We applied the combinatorial method to differentiate between
subjective scale and response bias in a task where participants marked
the location of a numerical magnitude within numerical intervals in
which Start and Length were varied systematically. The results un-
ambiguously show that approximate estimation in this particular task
is performed on a strictly linear scale. The linear regression model
predicted the data better than the model that included the weight for
the logarithmic component. This finding was supported by the anal-
ysis of the marginal effects of linear Target[Start-End], Start, and Length

on the error. For the logarithmic mapping, the regression slope for
linear Target[Start-End] is expected to be negative and complemented
with the negative slope for Start and the positive slope for Length.
However, the results show an opposite trend for Start with no signif-
icant effect of Length.

The results showed that performance was affected by linear
compression due to a response bias, known as the central tendency
effect. In other words, the small values within a numerical interval
were systematically overestimated, and large numbers were sys-
tematically underestimated. The strength of the central tendency
generally reflected participants’ ability to solve the task, such that
the smaller central tendency was associated with higher proportion
of the variance, explained by the regression models. The regres-
sion mean was close to, but statistically greater than, the middle of
the numerical interval. This slight shift has a simple explanation in
another factor that biased performance: the magnitude of Start. It
can be noted that the intercepts of the least squares lines for Start
in Figure 5A are approximately equal to zero. Consequently, each
level of Start contributed to the magnitude of a responded ratio,
causing, on average, a slight increase in the regression mean. It can
also be confirmed by the fact that the regression means signifi-
cantly correlated with the betas for Start at a within-subject level
for either line orientation (L-R: r � .61, p � .005; R-L: r � .49,
p � .03).

Ascribing the biasing effect specifically to the magnitude of
Start may be inappropriate, as the display of the task constitutes a
rather complex composition of different numbers, where the mag-
nitude of Start can strongly correlate with other magnitudes and
their sums (but not with the differences between numbers). Con-
sequently, the performance can be better accounted for by saying
that participants tended to provide a greater estimate for the
magnitude of Target when they faced numerical problems of a
greater numerical size.

The question remains whether this bias, linear mapping, and the
central tendency effect generalize to a task involving a different set
of constraints and response requirements. The following study
aimed at extending the understanding of the processes that affect
the mapping of the internal magnitude scale into behavior in a
novel number-to-position task.

Experiment 2: The Line Construction Task

To test the generality of our findings, we designed a new task in
which participants had to construct an interval. As before, they
were presented with a line signifying the length of the numerical
interval between Start and End. However, this numerical interval
was deemed to be just a part of a whole interval. Given the length
of the line and the numerical length of the part, participants were
asked to extend the line up to a magnitude of Target, which was
always greater than End. For example, participants could be pre-
sented with a line bracketed by 12 and 23. Given 45 as a Target
number, participants had to add an extension to the line, such that
the length of the extension would correspond to the numerical
distance between 23 and 45. In this particular example, the length
of a correctly constructed extension would be twice as long the
initially presented line segment.

The differences in the task do not prevent us from using the
same analytic apparatus for testing the linear and logarithmic
hypotheses. To account for the fact that Target is larger than End,

Figure 5. Line-marking task. The marginal effects of interval Start,
interval Length, and linear Target[Start-Target] on the errors in responses. The
error bars show the group mean standard deviations. The effect of Start was
positive, whereas the effect for Length was completely flat, contrary to the
predictions of the log scale hypothesis. Neither experimental variable
showed a significant difference between left-to-right and right-to-left ori-
entation.
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we simply redefine Length as the distance between Start and
Target and exchange Target and End in Equation 2 to get

End �Start-Target� �
f 	End
 � f 	Start


f 	Target
 � f 	Start

. (8)

The result that follows is identical to Equation 6, except that
End[Start-Target] substitutes for Target[Start-Target], T represents
the distance between Start and End, and L represents the dis-
tance between Start and Target. In this formulation, the predic-
tions for the logarithmic hypothesis remain identical to the
line-marking line; that is, the slopes are expected to be negative
for End[Start-Target] and Start and positive for Length.

Apart from the differences in response requirements, it is also
worth considering the differences in the constraints between two
tasks. In the previous task, no cues, apart from numerical values,
were available on where the line should be marked. On the other
hand, the response was constrained to lie within a closed spatial
interval, represented by the physical line. Given that the center of
the line is easily identified, the tendency to overestimate or under-
estimate the magnitudes around the middle of a numerical interval
could be artificially induced by the spatial format of the task.

In the context of the line construction task, the central tendency
involves different processes and would manifest itself as the ten-
dency to underconstruct a long addend to the part and overcon-
struct a short addend. In the current design, the length of a
presented part provided a cue as to how long an added line should
be. If an initially presented line was short, participants could figure
out fairly quickly that they need to construct a rather long addend
to the line, and vice versa if an initially presented line was long. On
the other hand, because the standard for the whole line was never
shown to participants, the presented segment did not clearly indi-
cate how long the line should be and where the middle of an
interval should lie. In this respect, the line construction task can be
more sensitive for the study of the number magnitude scale than
the line-marking task, as participants were free to construct the size
of representational space. If a logarithmic component was indeed
present in the estimation, then participants would systematically
underconstruct the line (i.e., causing the shift of the regression
mean toward a greater value).

Method

Participants. Twenty participants (eight men, 12 women)
20–52 years of age (M � 25.1, SD � 7.62) took paid participation
in the study. They all gave informed consent, had normal or
corrected-to-normal vision, and declared themselves to be right-
handed.

Stimuli and apparatus. In this experiment, participants saw
a gray horizontal line that was deemed to be just a part of a longer
whole line. The line width was identical to that used in Experiment
1. In the L-R condition, a Start and an End were presented in white
below the line at its left and right ends, respectively. At the right
end and above the line, a Target was presented in red. The location
of the line’s right end varied randomly between 60 and 140 pixels
to the left of the monitor center. Moving the mouse to the right
enabled participants to extend the line by adding a white strip
(extension) to the initially presented gray part. The extension
continuously prolonged with the movement of the mouse, and it

could also be reduced by moving the mouse backward. The spatial
layout for R-L condition was reversed. The manipulations with the
mouse had no effect on the length of the initially presented gray
part. Any displacement of the mouse along the vertical axis was
ignored, and the speed of the extension growth or shrink was
identical to the speed of the cursor in Experiment 1.

Design and procedure. The experimental design and proce-
dure of the line construction task, with appropriate adjustments, mir-
rored those of the line-marking task in Experiment 1. By contrast to
the line-marking task, the Target magnitude in the current task was
always greater than End. Consequently, to make two tasks compara-
ble, we made two changes in experimental variables. First, linear
End[Start-Target] substituted for linear Target[Start-End]; that is, we ma-
nipulated a relative distance between Start and End to the distance
between Start and Target instead of a relative distance between Start
and Target to the distance between Start and End. Second, Length was
defined as the distance between Start and Target (between Start and
End in the line-marking task). The values for linear End[Start-Target],
Start, and Length were generated in the same way as described for the
line-marking task.

The only difference in the experimental procedure was in the
response requirements: Instead of marking a presented line, par-
ticipants had to construct the line as far as it was implied by the
magnitude of Target, given a numerical distance between Start and
End and the length of the gray line, representing the physical
analogy of that numerical distance. The length of the presented line
was such that a correct estimation would require a whole line to
be between 460 and 540 pixels long. The value for the correct line
length was drawn from a uniform distribution but subject to the
same constraints as described for the line-marking task. We chose
not to vary the length of the line to a greater extent, as it would
make a comparison between the current and line-marking task
problematic due to the differences in spatial parameters of the
tasks.

In line with the change in the definition of experimental vari-
ables, the response was calculated as a relative magnitude of a gray
part to the sum of the gray part and a constructed white segment.

Results

Eleven trials (�1%) were excluded from the analysis. For all of
them the deviation from a correct response was more than .4.

Model selection. The median weight w for the full model
given in Equations 6 and 7 was equal to 1. Only for one subject the
magnitude of the weight (w � .065) was sufficiently small to
suggest the presence of the logarithmic component in the re-
sponses. The model comparison showed that the linear model
predicted data better than the full model (L-R: z � 3.25, p � .005;
R-L: z � 2.24, p � .025). The result was confirmed by the
statistics on the basis of Akaike information criterion (z � 3.67,
p � .001) for both orientations. The cross-subject log of Bayes
factor was equal to 5.45 for L-R orientation and 4.11 for R-L
orientation (very strong evidence in favor of the linear model). The
linear model accounted for 87% of the variance for the L-R
condition and 85% for the R-L condition. The effect of the line
orientation was not significant (z � 1 for both models, confirmed
by Akaike information criterion).

Analysis of bias. The mean equations of the linear regre-
ssion model with the linear End[Start-Target] as a predictor were
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Response(L-R) � .811 � End[Start-Target] � .081 and Response(R-L) �
.808 � End[Start-Target] � .092 (see Figure 6). The slope of the
linear regression line was significantly smaller than 1, t(19) �
7.61, p � .001, and t(19) � 6.95, p � .001, for L-R and R-L,
respectively, and there was no difference between L-R and R-L
orientations (t � .1). The alternative test for the central tendency
showed that the standard deviation of responses was significantly
smaller than the standard deviation of the linear End[Start-Target]

values, tL-R(19) � 5.95, p � .001, and tR-L(19) � 5.55, p � .001.
The regression means for L-R and R-L were very close to and not
statistically different from .5 (L-R: .49, t � 1.5; R-L: .5, t � 1) and
each other (t � 1.63, p � .11).

The effect of linear End[Start-Target], Start, and Length on
error. The results for linear End[Start-Target], Start, and Length
are shown in Figure 7. There was a significant negative trend as a
function of linear End[Start-Target]: Start-controlled, L-R: t(19) �
7.50, p � .001, R2 � .34; Start-controlled, R-L: t(19) � 5.31, p �
.001, R2 � .29; Length-controlled, L-R: t(19) � 6.52, p � .001,
R2 � .27; Length-controlled, R-L: t(19) � 7.52, p � .001, R2 �
.34. A repeated measures 2 � 2 analysis of variance on slopes
(block: Start/Length; orientation: L-R/R-L) showed that neither
main effects nor their interaction was significant (all Fs � 1.2).
The mean slopes were �L-R/Start � �.191, �L-R/Length � �.181,
�R-L/Start � �.183, and �R-L/Length � �.20. The beta values for
linear End[Start-Target] were very consistent at a within-subject
level, with the correlation between them for different experimental
blocks ranging from .71 to .80 (all ps � .001). In addition, there
was a strong negative correlation between betas and R2 of the
linear models (all � � .43, p � .01).

A t test on the regression slopes for Start showed that they did
not statistically differed from zero and there was no difference
between L-R and R-L (all ts � 1.46, p � .16). The distribution for
betas of Length visibly deviated from normality, approximating
the form of a nonsymmetrical one-tailed Gaussian. Therefore, we

used Wilcoxon signed-rank test instead of t test. The beta values
for two line orientations were significantly smaller than zero (L-R:
z � 3.81, p � .001, R2 � .07; R-L: z � 3.88, p � .001, R2 � .06)
and were not different from each other (z � 1). The betas for
Length were negative in 37 cases out of 40 (median � � �.007 per
10 number units for both L-R and R-L). Nonparametric correlation
analysis showed that the correlation between the betas of Length
for L-R and R-L was very close to significance (Kendall’s � � .32,
p � .055), suggesting that the effect was moderately consistent at
a within-subject level.

One of the possibilities why no significant effect of Start was
found is that there was a nonzero correlation between pairs of
independent variables. In the Start-controlled blocks, the values for
Length were generated randomly but were not orthogonal to Start
by design. Although the group mean correlation between Length
and Start in the Start-controlled blocks was close to zero, it ranged
from �.24 to .32 for individual participants. Consequently, we
asked whether the positive trend for Start did not show up because
it was counterbalanced by a stronger and more consistent effect of
Length in this task. There is an indirect way of inquiring into this
issue. It can be expected that the counterbalancing would reveal
itself as a negative correlation between individual beta values for
Start and the strength of the correlation between Length and Start
for each subject. Testing this hypothesis, however, did not support
that the counterbalancing took place, as the strength of the corre-
lation was found to be negligible (p � .67 for either line orienta-
tion).

Discussion

The results of Experiment 2 demonstrated that the approximate
estimation of symbolic numerical magnitudes was performed on
the linear scale. We showed that the linear regression model
predicted the data better than the full model with a weight for a

Figure 6. Line construction task. The group means and their standard
deviations of responses with the linear End[Start-Target] as a predictor. Figure
6A shows that the slopes of linear regression models are significantly
smaller than 1, indicating the presence of linear compression in the data,
that is, a central tendency. Figure 6B shows the bars for the regression
means. The latter were not statistically different from .5, implying that the
crossover from overestimation to underestimation took place at the middle
of the interval for both line orientations. L � left; R � right.

Figure 7. Line construction task results. The marginal effects of interval
Start, interval Length, and linear End[Start-Target] on the errors in responses.
The error bars show the mean standard deviations. The effect of Start was
no longer positive, whereas the effect for Length was consistently negative,
contrary to the predictions for the log-scale hypothesis. Neither experimen-
tal variable showed a significant difference between left-to-right and right-
to-left orientation.
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logarithmic component. The analytical method, decoupling the
effects of linear End[Start-Target], Start, and Length, provided a
further support for the strong linear hypothesis. The logarithmic
hypothesis predicts a negative trend for linear End[Start-Target],
complemented by the negative trend for Start and the positive
trend for Length. However, we found that the effect of Start was
nonsignificant, whereas the negative trend for Length was very
consistent at a between-subjects level and moderately consistent at
a within-subject level. The results suggest that the negative trend
for linear End[Start-Target] was due to the central tendency bias. The
regression means were statistically indistinguishable from .5, im-
plying that the switch from overestimation to underestimation was
in the middle of a numerical interval. Once again, the strength of
the central tendency was a marker of randomness in performance,
such that the stronger effect was accompanied with lower vari-
ances explained by the regression models.

The effect of Length essentially implies that participants tended
to construct longer extensions to the line as the numerical differ-
ence between Target and Start increased, resulting in an increasing
underestimation of End[Start-Target]. The findings of this effect with
the null effect for Start are in a striking contrast to the results of the
line-marking task, where participants were biased by the magni-
tude of Start, not Length. Taking into account that the effect cannot
be ascribed exclusively to Length (i.e., the difference between
Start and Target), as the latter should correlate with the difference
between other stimulus magnitudes, one can interpret the results as
showing that participants’ decisions in the line construction task
were biased by the magnitude of numerical differences between
numbers rather than the individual absolute magnitudes of the
latter.

General Discussion

The investigation of the subjective scale for magnitude repre-
sentations cannot take for granted the notion that the type of the
scale can be inferred directly from the stimulus–response mapping.
The aim of our study was to describe and exploit a method that
addresses the theoretically motivated problem of differentiating
between the linear and logarithmic scaling hypotheses for numer-
ical magnitudes, while controlling for the bias in the decision
making. The method exploits the idea that a scale is defined not by
its appearance but by the transformational rules according to which
magnitudes get assigned (Luce, 1959; Stevens, 1968). The method
was implemented in a modified version of the number-to-position
paradigm, where participants were required either to mark the
position of an Arabic numeral within an interval of varying length
and start or to complete such interval by constructing the line of an
appropriate length. The modification also allowed us to avoid the
shortcomings of the previous studies, where a digit number was
positioned within standardized intervals. This sort of interval is
easy to deal with for adult participants, and hence, the null result
does not provide convincing evidence for the linearization of the
numerical scale.

The results show that responses were derived from a linear
subjective scale irrespective of whether participants were required
to mark or construct the line. We used two complementary ap-
proaches to the data analysis, those of model fitting and analytical
decomposition, and none of them revealed signatures of a loga-
rithmic trend in responses. We found the presence of the central

tendency, that is, a form of linear compression where small num-
bers in an interval are overestimated and large numbers are un-
derestimated. This effect has been observed in diverse experimen-
tal settings (e.g., Huttenlocher, Hedges, & Duncan, 1991;
Matthews & Stewart, 2009; Nakamura, 1987; Preston & Baratta,
1948; Sheth & Shimojo, 2001) and is likely to represent a general
response bias under uncertainty. This view is supported by the
findings in our study, showing that the responses were more
randomly distributed for the participants with a stronger central
tendency.

One of the possible reasons why the performance in our tasks
revealed a perfectly linear mapping is that the magnitudes pre-
sented as Arabic numerals are more susceptible to algorithmic
computations than those presented nonsymbolically. For example,
the judgments could be partially based on the analyses of the
decade differences. That might impose a roughly linear structure
on the estimation, even though the latter remained approximate.
Consequently, a generalization of our findings to the other formats
for numerical magnitudes (i.e., dots or the number of tones) should
be treated with caution. However, the combinatorial method, when
applied to numerosities presented nonsymbolically, provides an
opportunity to resolve the issue.

The mental number line hypothesis plays an important role in
our understanding of the processes underlying the representations
of number. The hypothesis can be characterized by two statements.
First, the mental number line is held to represent magnitudes in one
orientation only, left to right in our alphabetic cultures (Shaki &
Fischer, 2008). Second, the mental number line is held to be the
representation of numerical magnitudes automatically and obliga-
torily activated in all numerical tasks. This implies that the per-
formance in the right-to-left condition would require some sort of
mental rotation, which could have the effect of producing more
internal noise, and hence more variability in responses. Despite the
fact that we explicitly used a number line analogy in the design of
the study, our results did not show any accuracy differences
between L-R and R-L conditions in either task. However, as most
evidence for an oriented representational continuum is derived
from reaction time data, it is possible that the accuracy measures
in the absence of a limit on reaction times may be insufficiently
sensitive to detect the costs.

Our results also demonstrate that the performance was affected
by task-specific effects. In the line-marking task, participants
tended to overestimate target magnitude when the start of an
interval increased, whereas in the line construction task they over-
estimated when the length of the interval increased. These partic-
ular trends are not compatible with the logarithmic mapping that
predicts a greater overestimation for smaller starts in the line-
marking task and for smaller lengths in the line construction task.
Meanwhile, the finding that participants were biased in different
ways clearly indicates that marking magnitude and constructing
magnitude emphasized different numerical relations and that, other
factors being equal, the way participants manipulate and combine
the quantities can have a specific effect on an estimation outcome.
Although it is not possible to answer what factors were critical,
two alternatives may be considered. One possibility is that the
process of estimation was tuned to the actual mode of behavior.
More concretely, if the task required an assignment of a discrete
magnitude to a location on the physical line, then the relations
between numbers were represented in terms of their absolute
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magnitudes. If the task was to complete an interval, that is,
something that extends from A to B, then those relations were
represented in terms of differences between numbers. Another
possibility is that the task-specific effects might result from the
between-task difference in the position of a target with respect to
an interval. If the target lay outside the interval, as it was in the
construction task, that might induce participants to estimate in
terms of how far it is positioned from the other numbers (i.e., in
terms of numerical distances), instead of how big its magnitude is
with respect to others.

Alternatively, two possible mechanisms predicting the overes-
timation of a target number can be envisaged in terms of the
mental number line hypothesis. The first possibility is that the bias
can be a result of an attentional shift, evoked by the canonical L-R
orientation of the line. As proposed by Lourenco and Longo
(2009), the amount of compression in the mental number line may
depend on whether some part of the number line is in a focus of
attention. The segment of mental number line becomes decom-
pressed when it is in the focus; otherwise it returns to a default
compressed state. For example, in our line-marking task, partici-
pants may tend to fixate on the interval between Start and Target
more than on the interval between Target and End, as the position
of Target should be marked at some distance from the interval
Start. As a result, the unattended part may become represented
compressively, resulting in the overestimation. This idea seems to
account for the findings that the overestimation was somewhat
smaller for the noncanonical orientation. Here the magnitude of
interval End was presented in the location of Start for a canonically
oriented interval and therefore could have a greater saliency than
in the noncanonical condition.

The second possibility is that the target overestimation may be
closely related to so-called operational momentum bias, reported
for the operations of addition and subtraction (Knops, Viarouge, &
Dehaene, 2009; McCrink, Dehaene, & Dehaene-Lambertz, 2007).
The phenomenon is characterized by participants’ tendency to
increasingly overestimate for addition and underestimate for sub-
traction as the true sum or the true difference increase. It is thought
that the effect arises from dynamic representations of symbolic
operations on the mental number line and can be described with a
physical analogy: Before a moving body stops under the effect of
counteracting forces, it travels some distance, which is greater for
heavier bodies. In this analogy the body is a number, the mass is
its magnitude, and the path along which the body moves is the
mental number line. Given that, from a mental number line per-
spective, finding a location of a number within an interval could
require moving along the mental continuum from left to right, the
process of mapping numbers and performing addition appear to be
operationally similar to each other and can cause similar behav-
ioral outcomes.

The main reason why both possibilities provide at best a partial
interpretation for our results is that an obligatory mapping that is
automatic and beyond cognitive control, as required by the mental
number line hypothesis, presumes a unique mode for representing
the relation between magnitudes. The contrast of the numerical
factors biasing performance in our tasks clearly shows that it was
not the case. In keeping with the physical analogy, the perfor-
mance in the line construction task would require a different sort
of dynamics, as compared with the line-marking task: Here the
overestimation was caused not by the mass of the body (i.e.,

number absolute magnitude) but by the differences between two
masses (i.e., numerical difference). If the mental number line
allows for such flexibility, then it represents an adaptive strategy
used to operate with abstract quantities: convenient and conven-
tional but not obligatory.

The question remains what these task-specific and number-
related effects tell us about magnitude representation and process-
ing. First, the presence of a consistent bias per se suggests that
there is a capacity limit that constrains representing the relations
between two pairs of numbers simultaneously. If the difference
between Start and Target versus the difference between Start and
End could be optimally contrasted, then participants would not
consistently weight the difference between one pair of numbers
more than the other. Second, our findings suggest that the choice
of the format for representing numerical relations on the numerical
scale depends on the particular task requirements. In one task, the
response bias was triggered by the absolute magnitudes of the
numbers, with no effect of differences between numbers, and vice
versa for the other task. As this contrast suggests, the relations
between magnitudes would be encoded as either the difference
between two magnitudes or the magnitude of their difference.
From the point of view of formal arithmetical rules, the distinction
is meaningless because the statements are numerically equivalent.
However, from the point of view of the mental operations with
magnitudes, each way of encoding may be better suited than the
other for a numerical problem at stake.

In summary, our results imply that the subjective scale of
numerical magnitudes in adults is linear. Mapping from the sub-
jective scale into behavior is affected by response biases and can
be deployed flexibly according to task demands.
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