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We use a latent difference score (LDS) model to examine changes in young children’s
number-line (NL) error signatures (errors marking numbers on a NL) over 18 months. A
LDS model (1) overcomes some of the inference limitations of analytic models used in
previous research, and in particular (2) provides a more reliable test of hypotheses about
the meaning and significance of changes in NL error signatures over time and task. The
NL error signatures of 217 6-year-olds’ (on test occasion one) were assessed three times
over 18 months, along with their math ability on two occasions. On the first occasion
(T1) children completed a 0–100 NL task; on the second (T2) a 0–100 NL and a 0–1000
NL task; on the third (T3) occasion a 0–1000 NL task. On the third and fourth occasions
(T3 and T4), children completed mental calculation tasks. Although NL error signatures
changed over time, these were predictable from other NL task error signatures, and
predicted calculation accuracy at T3, as well as changes in calculation between T3 and
T4. Multiple indirect effects (change parameters) showed that associations between initial
NL error signatures (0–100 NL) and later mental calculation ability were mediated by error
signatures on the 0–1000 NL task. The pattern of findings from the LDS model highlight
the value of identifying direct and indirect effects in characterizing changing relationships
in cognitive representations over task and time. Substantively, they support the claim
that children’s NL error signatures generalize over task and time and thus can be used to
predict math ability.

Keywords: number line error signatures, predicting math ability, longitudinal analysis, latent difference scores,
stability and change in development

Introduction

The relationship between age-related changes in number-line (NL) error signatures (deviation
errors in marking the location of specified numbers on a horizontal number line—e.g., “67” on a
30 cm 0–100 NL) and math ability have led some to claim that NL signatures are markers of math
competence (Siegler and Booth, 2004; Siegler and Ramani, 2009; Sasanguie et al., 2013). Others
argue this causal inference is unwarranted since the relationship is merely a correlation between
two changing measures, often based on cross-sectional age data. We suggest some insight into the
diagnostic relevance of NL error signatures could be gained by examining the stability and/or change
in and across NL tasks over time. If NL error signatures remain relatively stable over time and task,
it could be interpreted as continuity in NL representations, and support for the claim that NL error
signatures are markers of math competence. However, if NL error signatures vary widely across time
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and task, it would argue against a stable representation, and
instead support the claim that NL abilities likely reflect educa-
tional experiences.

Determining the stability (or otherwise) of NL error signatures
across time and task is more methodologically challenging than
it might at first seem. We identified four studies that investigated
stability and/or change in NL error signatures over time (Landerl,
2013; LeFevre et al., 2013;Muldoon et al., 2013; Praet andDesoete,
2014), each of which used different analytic models, and which
are subject to different interpretive limitations. We use a latent
difference score (LDS) model to overcome these limitations and
to examine the change and/or stability in 6-year-olds’ 0–100 NL
and 0–1000 NL error signatures over a 2 year period.

Decreases in the magnitude of NL errors are correlated with
improvements in age-related math abilities (Siegler and Booth,
2004; Booth and Siegler, 2006, 2008; Laski and Siegler, 2007;
Schneider et al., 2009; Berteletti et al., 2010; Thompson and
Siegler, 2010; Fischer et al., 2011; Ashcraft and Moore, 2012;
Sasanguie et al., 2012a,b, 2013; Jordan et al., 2013). At least three
hypotheses have been proposed for the correlation. First, some-
thing akin to a mental number line (MNL; a subjective scale of
numericalmagnitudes) is thought to underlie NL estimation abili-
ties (Dehaene andCohen, 1995; Dehaene, 2001; Siegler andOpfer,
2003; Gilmore et al., 2007). A reduction in NL estimation errors
with age is attributed to the fine tuning of a pre-existingmagnitude
representation system (Siegler andOpfer, 2003; Siegler and Booth,
2004; Booth and Siegler, 2006, 2008; Opfer and Siegler, 2007;
Berteletti et al., 2010; Slusser et al., 2012; Kolkman et al., 2013).
Second and a related hypothesis is the use of linear representations
in formal instruction modifies number-space mapping ability,
which in turn supports linear NL representations (Berteletti et al.,
2010). Gunderson and colleagues provide longitudinal evidence
for a link between early spatial skills, NL acuity and later math
abilities. Specifically, the relationship between early spatial skills
at age five (e.g., proficiencywithmental rotation and translation of
shapes) and math ability at age eight (e.g., approximate symbolic
calculation) was completely mediated by the linearity of children’s
NL estimation responses at age six (Gunderson et al., 2012).
Third, improvement in NL estimation abilities simply reflects
experiences with NLs in educational settings (Huber et al., 2014).
The difficulty with each of these hypotheses is they can only be
evaluated using longitudinal research designs.

We could only locate four studies that investigated stability
and/or change in NL error signatures over time (Landerl, 2013;
LeFevre et al., 2013; Muldoon et al., 2013; Praet and Desoete,
2014). Among other differences, these studies used different ana-
lytic models to test claims about the nature of NL error signatures
over time, each of which has different limitations on plausible
inferences. For instance, change parameters were not explicitly
specified in two of the four studies (Landerl, 2013; LeFevre et al.,
2013), and latent growth models were fit to a restricted range of
change/growth patterns in one study (Muldoon et al., 2013). And
assessingNL estimation in a single number range (e.g., 0–100NLs:
LeFevre et al., 2013; Praet and Desoete, 2014) limits conclusions
that can be drawn about the generality of NL estimation abilities.
When different NL ranges were used (Landerl, 2013; Muldoon
et al., 2013), analysis of between-task effects were limited.

In Landerl’s (2013) research, NL estimation abilities were
assessed on both 0–100 NL and the 0–1000 NL tasks on five
occasions over 2 years (from Grade 2 to 4). The aim was to
compare standard regression equations and repeated mean effects
that examined changes over time to identify differences in NL
estimation between dyscalculic and non-dyscalculic children.
Dyscalculic children showed similar patterns of changes in NL
estimation abilities over time to non-dyscalculic children (as indi-
cated by decreases in regression slopes). However, the dyscalculic
children were consistently less accurate in estimating the position
of numbers on NLs (indicated by mean estimation error). The
fact that the error signatures showed similar slope patterns for
the dyscalculic and non-dyscalculic children on the 0–100 NL
and 0–1000 NL was interpreted as showing NL error signatures
generalize across different number ranges.

One issue with Landerl’s approach is standard regression mod-
els limit inferences that can be drawn about changes to NL error
signatures. When linear regression slopes are fit to these data,
change is conceptualized as differences in estimation accuracy
over time at a constant rate. It is possible that error signatures
differ initially and change at different rates; insofar as this is
correct it would suggest it is important to take into account the
magnitude of initial and subsequent error signatures as well as the
rates of change across time.

LeFevre et al. (2013) examined 8-year-olds’ performance on a
0–1000NLon two occasions. A cross-lagged panelmodel (CLPM)
examined the relationship between differences in NL error signa-
tures, spatial ability and math ability. Results suggested that NL
error signatures were correlated across test occasions; however,
the authors acknowledge that the direction of influence between
NL estimation andmath ability was difficult to determine because
the twomeasures appear to affect each other (i.e., were correlated).

Although CLPM potentially provide information about the
direction of mutual influence, they do not provide information
about change/growth per se. In particular, autoregressive param-
eters allow an examination of the relative stability of relevant
parameters (i.e., how well does prior performance predict current
performance). It is important to focus on change as well as relative
stability in NL error signatures over time, and the relationship
between them and math problem solving.

Muldoon et al. (2013) examined the relationships between NL
estimation errors on 0–10, 0–20, and 0–100 NLs in 5-year-olds
on four occasions (as well as general math and counting abilities)
using latent growth curve modeling. Stepwise linear regressions
showed that the linearity of NL estimation error signatures did not
predict math ability when counting ability was taken into account
(counting ability was used as a proxy for number knowledge).
Latent growth curve modeling was subsequently used to deter-
minewhether the rate of change inNL error signatures was related
to the rate of math ability change (a standardized measure). They
found that collinearity between theNL and themath latent growth
parameters of NL error impeded model convergence; that is, the
high correlation betweenmeasureswas problematic for themodel.
The only model to converge suggested that math ability on the
first test occasion predicted linearity of NL estimations on the
0–20 NL task on the same occasion, irrespective of the growth
parameters. Althoughmost children showed a trend toward linear
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NL estimation across time, the changes were not captured by their
latent growth models.

Although Muldoon et al.’s (2013) analytic approach is an
attempt to identify the significance of change parameters associ-
ated with NL error signatures directly, the restricted time period
of the study may have limited the ability to identify a change
model. Moreover, the restriction associated with latent growth
curve modeling per se may have also affected outcomes. Latent
growth curve analysis requires changes to occur in a systematic
manner (i.e., linear, quadratic) for convergence and model fit. Of
course there is no a priori guarantee that these conditions will be
met for any set of changing relationships.

Praet andDesoete (2014) examined how notation format, intel-
ligence and language skills influenced 0–100 NL estimation at five
time points from Kindergarten to Grade 2. Three formats were
used to presentNL targets: Arabic numerals, spoken/written num-
ber words, and dot patterns. Latent growth curve models revealed
significant variability in NL estimation accuracy at Kindergarten
and that accuracy increased from T1 to T5 with little variability
between children for both Arabic numerals and number words.
NL estimation accuracy with dot patterns showed similar signif-
icant initial variability but also showed significant variability in
change of accuracy between children from T1 to T5. Intelligence
measured at Kindergarten was a significant covariate predicting
both initial percentage absolute error (PAE) in NL estimation, as
well as a decrease in PAE fromKindergarten to Grade 2. Language
skills measured at Kindergarten also predicted initial variability in
PAE in NL estimation but not change over time. However, similar
to Muldoon et al. (2013), latent growth curves were specified to
change as a linear slope (constant rate) across all time points and
only a single NL range was used (0–100 NL).

The different analytic models allow different plausible infer-
ences to be made about NL error signatures. Compared to linear
regression analyses, CLPM, LeFevre et al. (2013) provide a charac-
terization of the stability of NL error patterns over time. A useful
feature of CLPM is longitudinal associations between a measure
and itself at a later time point are taken into account by speci-
fying autoregressive effects (i.e., influence of prior performance
on current performance). Autoregressive effects may be useful for
examining the persistence of NL error signatures across time (and
possibly across task) and whether current performance is best
understood in the context of previous performance. Linear regres-
sion models do not allow for a characterization of these effects.

Nevertheless, CLPMs do not take into account the effects of
prior changes on performance (since the focus is on stability
or otherwise of measures over time). There are two difficulties
associated with an inability to specify change per se as a param-
eter in CLPM. First, predictions may over- or under-estimate
“direct” (e.g., the influence of “x” on “y”) and “indirect” (e.g.,
“x” influences “y” though its impact on “z”) effects and their
interrelationships are unlikely to be static across time. Second, the
interpretation of change itself is not straightforward in CLPMs,
given that measures of current performance are likely to be con-
flated with the accumulated effects of prior changes, both within
and across test measures. The aim of the present study is to
overcome these limitations using a latent different score model
(LDS).

Three issues currently limit the value of NL estimation as an
index of later math difficulties: (1) 0–100 NL and 0–1000 NL
tasks are rarely assessed together to determine whether children
show similar learning across these different number ranges, (2)NL
estimation abilities and math problem solving are often assessed
at a single time point, limiting conclusions regarding their rela-
tionship over time, and (3) even when NL abilities have been
examined longitudinally, change in NL error signatures time has
been inferred from statistical outcomes, rather than evaluated as
part of a developmental model. The present study is designed to
overcome these three limitations by examining NL error signa-
tures on different NL tasks over time and by testing the viability
of a LDS change model (McArdle, 2009; Coman et al., 2013).

In this study we use a LDS model to assess change and/or
stability in NL error signatures over time (see Analytic Approach
section for further model descriptions). Specifically, “change”
in LDS models is defined as an explicit model parameter (i.e.,
the change score or latent difference), which is defined as the
difference in scores between adjacent time points.When specified
in this way, variance associated with the previous test occasion is
removed from the change parameter. A benefit of this procedure
is that “changes” between test occasions can be interpreted as
independent of the accumulated changes from the initial start
point (McArdle, 2009; Coman et al., 2013).

We examine children’s error signatures on 0–100 NL and
0–1000NL tasks three times over an 18month period. The change
parameters in LDSmodels can be used to represent indices of cog-
nitive change. If the change score derived from one NL task (e.g.,
change in estimation precision between T1 and T2 for 0–100 NL)
predicts improvement in estimation on a different NL task (e.g.,
initial assessment of 0–1000 NL at T2 for instance), the statistical
change parameters could be interpreted as capturing changes in
an underlying (psychological) representational system1.

The linking of error signatures across NL tasks would suggest a
set of common psychological indices independent of a particular
number range. Conversely, if change in 0–100 NL scores predict
less precise estimation on the 0–1000 NL task at T2, the change
measure could be interpreted as reflecting experience or learning
effects affecting a particular number range (in this case, the 0–100
NL) and not a change in the underlying representation. The failure
to find a relationship in error signatures between a previously
familiar number range (0–100 NL) and a less familiar number
range (0–1000 NL) could be interpreted as suggesting an absence
in an underlying representation.

If change in 0–100 NL error signatures across time predicts
change in 0–1000 NL signatures across time (i.e., links between
change parameters), it would suggest that the change processes are

1Note: “stability” and “change” have both statistical and psychological mean-
ings. Statistically, “stability” tends to refer to orderly relationships among
measures, which may nevertheless change in a lawful ways over time. Psycho-
logically, “stability” tends to be regarded as a persistence of relationships that
do not change (over time). Here, we use the term “stability” as a statistical
referent, and “persistence” as a psychological referent. The statistical and
psychological meanings of “change” however, are very similar. Because of the
similarity in meaning, we used “change” interchangeably. The significance of
stability/change parameters for a developmental account of NL error signa-
tures are critical; and in particular, specifying the developmental trajectories
that might predict math ability.
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similar across task (i.e., the reduction in estimation in the 0–100
NL are similar to the reduction of errors in the 0–1000 NL task).
On the other hand, an absence of a relationship would suggest that
the rates of change differ. The latter effect would be unsurprising
since improvements in 0–1000 NL abilities are likely to be still
occurring.

In general, if a relationship between changes in NL error sig-
natures and mental calculation were observed, it would suggest
that improvement in NL estimation ability over time is related
to math ability. It is possible that different change effects would
be observed for the 0–100 NL and the 0–1000 NL, as well as the
relationship between these effects and mental calculation ability
(or any change in abilities). The latter information is important in
determining whether NL error signatures per se are diagnostically
useful in predicting math abilities.

Materials and Methods

Participants
The data were collected in sessions on four different occasions
at approximately 6-monthly intervals over a 2 year period (here-
after referred as T1–T4). On the first occasion the mean age
was 6.30 years (SD = 4.4 months). Participants comprised 217
children (59.5% male) and attended one of seven schools in
middle-class suburbs of a large Australian city. All children spoke
English, had normal or corrected to normal vision, and, according
to school personnel, had no known learning disabilities. The
study was conducted with the agreement of, and in compliance
with, the requirements of the authors’ University’s Human Ethics
Committee.

Materials and Procedure
Children completed Number Line Estimation tasks on three test
occasions and they also completed a Mental Addition task on
two occasions. A graphical representation of test sequences across
occasions is reported in Figure 1. On the first occasion (T1)
children completed a 0–100 NL task; on the second (T2) a 0–100
NL and a 0–1000 NL task; on the third (T3) occasion a 0–1000
NL task. On the third and fourth occasions (T3 and T4), children
completed mental calculation tasks.

Number Line Estimation Task
A “number—position” task (e.g., Siegler and Opfer, 2003) was
used on test occasions one to three (T1, T2, and T3). Children
were presented with a sequence of A4 pages, one at a time, on
which a 25 cm horizontal line was drawn. The left-hand end
of each line was marked with a “0” and the right-hand marked
with either “100” (0–100 NL) or “1000” (0–1000 NL). At the
top center of each page a target number was printed in large
bold type. Following Siegler and Opfer, children received three
familiarization trials at the beginning of each test session. They
were presented with one of the blank NL sheets and instructed
to “note the number at the top of the page,” and use the pencil
to mark “where that number belongs” on the line. Children were
asked to indicate “where the number goes” as quickly as possi-
ble; however, we did not record “decision” times. All children

appeared to grasp the aimof the task andmarkednumberswithout
hesitation.

Test trials immediately followed practice trials, prior to which
task instructions were repeated. Children received no feedback
on the accuracy of their responses. The 0–100 NL task com-
prised numbers “11, 29, 43, 61, 73, 89,” and the 0–1000 NL
task numbers “103, 307, 401, 599, 701, 887.” Numbers were pre-
sented in a random order across individuals and sessions. We
selected prime numbers as targets to limit the use of estima-
tion strategies based on factorization. Children’s responses were
analyzed using the average of absolute deviations from target
numbers.

Analyses of NL error signatures often involve fitting algebraic
functions to the magnitude of estimation errors of target numbers
on a NL, which tends to show an age-related shift from a loga-
rithmic to a linear fit function. Nevertheless, the shape of error
functions should not be confused with the magnitude (fuzziness)
of errors: NL error signatures can be linear but reflect relatively
large imprecise (fuzzy) numerical representation (Moeller and
Nuerk, 2011). Thus it is possible to use estimates that, when plot-
ted against the actual magnitudes, fit perfectly a linear function
that has neither the same slope or intercept value as the function
for perfectly accurate responses (i.e., the function y = x). For this
reason, absolute deviation scoresmay be amore useful index ofNL
performance since they are independent of model fit (see Ashcraft
and Moore, 2012).

Mental Calculation
The mental calculation tasks comprised 24 arithmetic word prob-
lems, presented via the audio system of a laptop computer. The
problems comprised eight joining problems (e.g., “Mary has x
marbles. She is given y marbles. How many marbles does she have
altogether?”), eight separating problems (e.g., “John has xmarbles.
He loses y marbles. How many marbles does he have left?”), and
eight separating-joining problems (e.g., “John has x marbles. He
lost y marbles. How many marbles did he have to begin with?”).
The word problems are age appropriate and have beenwidely used
previously to identify difference in math problem solving abilities
(Carpenter and Moser, 1982; Butterworth, 2005). Prior to solving
the 24 test problems, children completed three practice problems,
one each of the three word problem types. They were instructed
to listen very carefully to the number story problem and work
out the answer as quickly as possible. If a child asked to hear a
problem again, it was read again. To ensure children understood
the task, they were asked to describe what the problems were
asking them to do. We did not provide feedback on the accuracy
of answers. The test phase commenced immediately following
the practice session. Children’s answers were scored as correct or
incorrect.

Analytic Approach
We use a LDS model (McArdle, 2009; Selig and Preacher, 2009;
Coman et al., 2013) to investigate stability/change in NL error
signatures over time and task to determine if change parameters
per se predict NL estimation accuracy and math problem solving
over time. The “change” parameter in LDS models (labeled as ∆

in the model, see Figure 2) corresponds to a latent/unobserved
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FIGURE 1 | Partially overlapping longitudinal design for Time 1—Time 4. Example problems are shown for the 0–100 NL, 0–1000 NL, and mental calculation
tasks.

variable in the logic of structural equationmodeling (SEM). These
parameters of change (i.e., the change score or latent difference)
are defined between adjacent time points for each variable of
interest and are interpreted as capturing the uniqueness of a
current measure that is separate to an immediate prior measure.
When this method is repeated over time points and across tasks,
LDS models include both the effects of prior performance (as
with autoregressive effects in CLPMs), and importantly the effects
of prior changes in performance. Specifying the model in this way
allows an empirical test of inter-individual differences (between-
person) as well as intra-individual changes (within-person) on
the variable of interest. So-called “direct” and “indirect” effects
can also be specified in this model and are interpreted in a similar
manner to mediation analyses (Selig and Preacher, 2009). For
instance, 0–100 NL accuracy at T1 may directly influence mental
calculation abilities at T3 or this relationship may be indirectly
expressed through 0–1000 NL accuracy at T2. Bias-corrected
bootstrap confidence intervals are reported for all indirect effects
based on 10,000 bootstrap samples, allowing for non-symmetric
intervals.

Data for all test occasions were available for 186 of the 217
children (86%), with data from at least one occasion available
for the remainder: missing T2 only (n = 1), missing T2–T3–T4
(n = 16), missing T3–T4 (n = 1), and missing T4 only (n = 13).
Our model results and conclusions are not affected by whether
these children are included in our analyses or not, and all missing
data occurred for arbitrary reasons (e.g., child moved school,
absence due to illness etc.). Full-information maximum likeli-
hood estimation was used as a robust index of missing data. All
model parameters were derived using robustmaximum likelihood
estimation in Mplus version 7 (Muthén and Muthén, 1998–2013).

Results

Descriptive Statistics
As expected, precision of NL errors improved for both the
0–100 NL and 0–1000 NL tasks over time. For 0–100 NL, aver-
age absolute deviations decreased between T1 (M = 2.04 cm,
SD = 1.00 cm) and T2 (M = 1.42 cm, SD = 0.59 cm). For
0–1000 NL, average absolute deviations also decreased between
T2 (M = 3.37 cm, SD = 1.98 cm) and T3 (M = 2.80 cm,
SD = 1.78 cm). The proportion of mental calculation prob-
lem solved correctly improved over time (T3: M = 0.76,
SD = 0.20; T4: M = 0.81, SD = 0.17—since we found no
differences in the number of problems solved correctly as a
function of problem type, the means represent proportion cor-
rect across 24 problems is reported). Paired sample t-tests con-
firmed that differences on the 0–100 NL [t(185) = −9.534,
p < 0.001], 0–1000 NL [t(185) = −3.751, p < 0.001] and
mental calculation [t(185) = 5.418, p < 0.001] tasks were all
significant.

All tasks were correlated within and across test occasions (see
Table 1). For both NL tasks, greater imprecision on the first test
occasion was significantly associated with greater imprecision on
the following test occasion. The same pattern of association was
observed across NL tasks and test occasions. Greater imprecision
for each NL task at T1–T3 was also significantly associated with
lower mental calculation accuracy at both T3 and T4. Greater
mental calculation accuracy at T3 was significantly associated
with greater accuracy at T4.

Overall, the descriptive results are consistent with previous
researchwhich shows thatNL estimation patterns are significantly
associated across time and task, and that these NL estimation
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FIGURE 2 | Latent difference score mediation model with
standardized direct effects (and standard errors). Direct effects
numbered [1]–[15] are interpreted in text. X1 = 0–100 NL predictor T1;
X2 = 0–100 NL predictor T2; ∆X1–X2 = change in 0–100 NL predictor;
M2 = 0–1000 NL mediator T2; M3 = 0–1000 NL mediator T3,

∆M2–M3 = change in 0–1000 NL mediator; Y3 = mental calculation
outcome T3; Y4 = mental calculation outcome T4, ∆Y3–Y4 = change in
mental calculation outcome. Red arrow heads represent predictions
relating to 0–100 NL, blue arrow heads with 0–1000 NL, and a green arrow
head with mental calculation. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 1 | Longitudinal correlations across T1–T4 for 0–100 NL, 0–1000 NL, and mental calculation tasks.

Time 1 Time 2 Time 3 Time 4

0–100NLa 0–100NLa 0–1000NLa 0–1000NLa Calculationb Calculationb

0–100NLa 1
0–100NLa 0.37** 1
0–1000NLa 0.30** 0.38** 1
0–1000NLa 0.41** 0.32** 0.51** 1
Calculationb −0.29** −0.22* −0.32** −0.25** 1
Calculationb −0.35** −0.40** −0.40** −0.40** 0.68** 1

a, average absolute deviation; b, mental calculation total proportion correct. *p < 0.01, **p < 0.001.

patterns are related to later math ability (see Landerl, 2013;
LeFevre et al., 2013).

Latent Difference Score Mediation Model
The LDSmediationmodel is shown inFigure 2, with standardized
regression parameters printed along the associated longitudinal
pathways. We report the direct effects first to determine whether
NL error signatures persist over time and task and predict later
mental calculation abilities. Indirect effects (shown inTable 2) are
then interpreted to assess the possible existence of amediated rela-
tionship betweenNL error signatures and latermath performance.

(As noted earlier, the interpretation of direct and indirect effects
from the LDS model control for prior measures, as well as prior
changes in these measures).

Direct Effects
Direct effects of error signatures on the 0–100NL task persist over
time and across tasks. Poorer estimation on the 0–100 NL task
at T1 predicted [1] less change on the 0–100 NL task between
T1 and T2, [2] poorer estimation on the 0–1000 task at T2, [3]
greater change on the 0–1000 NL task between T2 and T3, [4]
poorer mental calculation accuracy at T3, and [5] less change in
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TABLE 2 | Indirect effects for the latent difference score mediation model.

No. Predictor Mediator Outcome Estimate 95% CIa

[1] 0–100NLX1 →0–1000NLM2 →CalculationY3 −0.192 [−0.324, −0.060]*
[2] 0–100NLX1 →∆0–1000NLM2−M3 →CalculationY3 −0.018 [−0.084, 0.048]
[3] ∆0–100NLX1−X2 →0–1000NLM2 →CalculationY3 −0.135 [−0.242, −0.029]*
[4] ∆0–100NLX1−X2 →∆0–1000NLM2−M3 →CalculationY3 −0.006 [−0.035, 0.024]
[5] 0–100NLX1 →0–1000NLM2 →∆CalculationY3−Y4 −0.184 [−0.317, −0.050]*
[6] 0–100NLX1 →∆0–1000NLM2−M3 →∆CalculationY3−Y4 −0.070 [−0.141, 0.001]
[7] ∆0–100NLX1−X2 →0–1000NLM2 →∆CalculationY3−Y4 −0.129 [−0.235, −0.024]*
[8] ∆0–100NLX1−X2 →∆0–1000NLM2−M3 →∆CalculationY3−Y4 −0.022 [−0.066, 0.022]

Indirect effects numbered [1]–[8] are reported in text. X, predictor; M, mediator; Y, outcome; a, standardized bias-corrected bootstrap confidence intervals (10,000 samples); *confidence
interval excludes 0 (i.e., significant indirect effect).

calculation accuracy between T3 and T4. The link between earlier
inaccurate NL estimation and poorer math outcomes (poorer
mental calculation) replicates previous cross-sectional and longi-
tudinal research.

Greater improvement in 0–100 NL estimation precision
between T1 and T2 predicted, [6] relatively poorer estimation on
the 0–1000 NL task at T2, and [7] less change in mental calcu-
lation accuracy between T3 and T4. This finding is unsurprising
since it likely shows that greater improvement (from T1 to T2
on the 0–100 NL) is associated with initially poorer 0–1000 NL
estimation errors. Improvement on the 0–100 NL task between
T1 and T2 was [8] unrelated to similar improvements on the
0–1000 NL task between T2 and T3 (i.e., a so-called change-
on-change effects) or [9] mental calculation accuracy at T3. The
finding of unrelated changes across NL tasks suggests that such
improvements reflect differences in change processes per se.

Error signatures on the 0–1000 NL task showed a similar
pattern of predictive relationships to the 0–100 NL task. Poorer
estimation on the 0–1000NL task at T2 predicted, [10] less change
on the 0–1000 NL task between T2 and T3, [11] poorer mental
calculation accuracy at T3, and [12] less change in mental cal-
culation accuracy between T3 and T4. Moreover, greater change
on the 0–1000 NL task between T2 and T3 was related to [13]
less change in mental calculation accuracy between T3 and T4,
but did not predict [14] mental calculation accuracy at T3. The
similarity of effects across bothNL tasks strengthens the argument
of persistence in NL error signatures over time, and ipso facto a
similar underlying representation.

Lastly, mental calculation performance was relatively stable
over time. Greater mental calculation accuracy at T3 predicted
[15] less change in mental calculation accuracy between T3 and
T4. Changes in accuracy were relatively small (0.76–0.81 problem
correctly solved).

Indirect Effects
The eight indirect effects of the model, with associated non-
symmetric 95% confidence intervals, are shown in Table 2. LDS
model indirect effects are interpreted in a similarmanner tomedi-
ation models; i.e., a unit increase in the predictor (“X”) predicts
a change in the mediator (“M,” direct effect), which predicts a
change in the outcome (“Y,” indirect effect).

All indirect paths with 0–1000 NL estimation at T2 as a medi-
ator were significant. Conversely, all indirect pathways involving

change in 0–1000NL estimation between T2 and T3 as amediator
were non-significant. We interpret this to suggest that increases
in proficiency 0–1000 NL may be still occurring and the change
does not sufficiently mediate the relationship between the early
NL error signatures and later mental calculation ability. The sig-
nificant indirect effects are reported below (the Indirect effects are
labeled 1, 3, 5, 7 in Table 2).

The persistence of poorer error signatures across NLs is related
to poorer math outcomes. Poorer estimation for 0–100 NL at T1
predicted poorer estimation for 0–1000 NL at T2, “leading to”
lowermental calculation accuracy at T3 (indirect effect 1). Greater
change in 0–100 NL estimation between T1 and T2 predicted
poorer estimation for 0–1000 NL at T2, leading to lower mental
calculation accuracy at T3 (indirect effect 3). The fact that change
in 0–100 NL is not related to better initial performance on the
0–1000 NL task suggests that this change reflects poorer initial
0–100 NL estimation ability.

A similar pattern of indirect effects were found when change in
mental calculation accuracy was the predicted outcome. Poorer
estimation for 0–100 NL at T1 predicted poorer estimation for
0–1000 NL at T2, leading to less change in mental calculation
accuracy between T3 and T4 (indirect effect 5). Greater change
in 0–100 NL estimation between T1 and T2 predicted poorer
estimation for 0–1000 NL at T2, leading to less change in mental
calculation accuracy between T3 and T4 (indirect effect 7).

Discussion

A LDS model was employed to examine stability and changes
parameters in NL error signatures over a 2 year period, and to
examine the degree to which these changes are linked to mental
calculation abilities. Four major findings are worth noting. First,
the magnitudes of NL estimation error signatures for the 0–100
NL and the 0–1000 NL both declined over time and initial per-
formance on both tasks were related; nevertheless, the rates of
decline differed (i.e., are not linked). In particular, greater change
occurred over the 0–100 range than the 0–1000 range over the
same period of time but on different occasions. Also, change in
0–100 NL did not predict change in 0–1000 NL (e.g., Figure 2,
direct effect 8). The pattern of findings shows that estimation
abilities improved on both tasks, but not at a similar rate across
the similar time-frames. This finding is not particularly surprising
since it is likely that relative knowledge of 0–100 NL and 0–1000
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NLdiffered in the age of the children studied.Nevertheless, theNL
error signatures for the 0–100 NL and the 0–1000 NL were linked
in terms of the relative magnitude of errors across time. This
pattern of findings suggests that the acuity of the representation
associated with NL error signatures is stable over time; in other
words, supports stable NL representation.

Second, as expected from an analysis of the direct effects and
subsequent paired-sample t-tests, the mean NL estimation errors
on the 0–100NL taskweremore precise at T2 compared to T1; and
the estimation errors on the 0–1000 NL were more precise at T3
compared to T2. Nevertheless, the correlation between T1 and T2
for the 0–100 NL task and between T2 and T3 for the 0–1000 NL
suggests that the relative error signatures remain relatively stable
across time, which suggests a common representation system.
Further, a similar pattern of relative error signatures occurred
across tasks; error signatures on the 0–100 NL at T1 were related
to the 0–1000 NL error signatures at T2. Similarly, the 0–100 NL
at T2 was related to the 0–1000 NL error signatures at T3. These
findings in particular suggest that NL error signatures remain rel-
atively stable within and across NL task and across time. In other
words, they suggest that the NL representation system remains
relatively stable across time. In sum, while NL error signatures
get smaller over time, the relative magnitude of the signatures
remained. By itself these findings supports an interpretation that
NL representations are relatively predictable over time. The lat-
ter interpretation however, is based on “direct effects” in the
LDS model, and ignores the possible contribution of so-called
“indirect effects” parameters in the model, which are considered
below.

Third, mental calculation accuracy (and change in mental
calculation accuracy from T3 to T4) could be predicted by NL
error signatures, as well as changes in NL error signatures over
time. In particular, less precise initial 0–100 NL and 0–1000 NL
estimation predicted poorer mental calculation accuracy at T3
and less change in calculation accuracy between T3 and T4. It
is also evident that mental calculation ability was relatively stable
over time, with small incremental, correlated changes, found. And
fuzzy NL error signatures were associated with poorer mental
calculation abilities–a similar finding to that found in previous
cross-sectional and longitudinal research (Schneider et al., 2009;
Sasanguie et al., 2012b; Landerl, 2013). The fact that change
in NL error signatures predicted less change in mental calcu-
lation ability may be partly attributed to accuracy remaining
relatively high over time (76–81% of problems correct). Overall,
it is evident that the LDS change parameters do indeed provide
unique predictions for both NL error signatures and computation
ability.

Fourth, the indirect pathway effects in the LDS model also
reveal interesting effects. Of particular note, estimation error sig-
natures on the 0–1000 NL at T2 mediate the 0–100 NL at T1 in
predicting mental calculation at T3 (and the change in calculation
between T3 and T4). This set of relationships is replicated for the
T1 to T2 change in the 0–100 NL. Nevertheless, it should be noted
that the T2 to T3 change in the 0–1000 NL did not similarly medi-
ate this prediction. This finding suggests either that (1) insufficient
change has occurred in the 0–1000 NL between T2 and T3, or (2)
change in the 0–1000 NL is not associated with calculation ability

per se. We suggest that the former interpretation is more likely to
be the case.

However, we acknowledge that children may only need to
improve their precision on the 0–100 NL task for a sufficient
shift in numerical understanding to occur that is relevant for
mental calculation. Improvements to 0–1000 NL estimation may
be irrelevant in this case. Relatedly, the NL task may not be
the most sensitive measure of mental magnitude representation
for larger number ranges. Nevertheless, we believe these mea-
surement issues are inherent in all studies designed to assess
cognitive phenomena that change over time. Moreover, our
findings correspond with both longitudinal (Gunderson et al.,
2012; Landerl, 2013; LeFevre et al., 2013; Muldoon et al., 2013;
Praet and Desoete, 2014) and experimental studies (Ramani and
Siegler, 2008; Siegler and Ramani, 2008, 2009) of NL estima-
tion. Consistent with previous research, our findings show that
change in NL error signatures occurs relatively slowly over time
(Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth and
Siegler, 2006, 2008; Thompson and Opfer, 2010; White and Szucs,
2012).

Conclusion
Overall, the findings show a relative consistency in NL represen-
tations over time and task, as indexed by the NL estimation error
signatures. Moreover, specific changes in NL representations per
se are important predictors of concurrent and future arithmetic
problem solving. It is evident that the LDS model framework
provides information about change not revealed by other longitu-
dinal analytic approaches (e.g., longitudinal regression analyses,
cross-lagged panel models). In our view, LDS models overcome
some of the limitations of earlier longitudinal research which
have used different analytic models. Although our findings are
consistent with earlier longitudinal NL findings, they provide
a more solid basis for drawing inferences about the relation-
ships between changes in NL representations and calculation
abilities.

Here we note three points. First, our research approach goes
beyond comparing differences in changes in NL error signatures
(Landerl, 2013) to making predictions about the stability and
change in error signatures within and betweenNL error signatures
across time and their relationship to computation abilities. In
other regression approaches, change is inferred from the sig-
nificance of longitudinal “pathways” in the model; in LDS, in
contrast, change is an explicit parameter in the model. Second, we
were able to make predictions about stability and change, rather
than simply focusing on the autoregressive effects associated with
stability models (LeFevre et al., 2013). It is evident that in the LDS
approach, we were able to tease apart the differential impact of
change and stability factors. Third, even where researchers have
attempted to fit latent growth models (Muldoon et al., 2013),
methodological limitations have impeded full model convergence
occurring. In LDS models change is specified in terms of adjacent
time points, and is thus less restrictive than the requirements
associated with fitting a curve in latent growth models, as used
by Muldoon et al. (2013), and Praet and Desoete (2014) in their
analyses of NL change. Our pattern of findings suggests that mod-
eling an entire relational change network provided a convergent
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model. Overall, the findings support the claim that a common
representation NL error signature system underlies estimate judg-
ments and that this system is associated with computation accu-
racy.
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