DYSLEXIA AND DYSCALCULIA: a review and programme of research

Brian Butterworth
Institute of Cognitive Neuroscience
\& Department of Psychology
University College London

www.mathematicalbrain.com
(C) Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

High correlation between literacy and numeracy abilities at school

- Ostad (1998) - correlations of 47 between maths and spelling scores, and in the Maths Disabled groups scored lower on spelling tests.
- Sample
- 927 children in grades 2,4 , and 6 (ages $8 ; 6,10 ; 5,12 ; 6$) excluding mentally retarded, deaf and blind
- Stanford Achievement Test
- WISC-R

Ostad, S. (1998) Log. Phon. Vocal., 23, 145-154

Prevalence estimates of Maths Disabled

STUDY location	ESTIMATE OF LEARNING DISABILITY	CRITERION	PERCENTAGEL ITERACY DISORDER
OSTAD (1998) Norway Log. Phon. Vocal., 23, 145-154	10.9% "Maths disabled"	Registered for special long-term help	$\begin{gathered} 51 \% \\ \text { Spelling disorder } \end{gathered}$
LEWIS et al (1994) England J. Child Psychol. Psychiat., 35, 283-292	3.6% "specific arithmetic difficulties"	<85 on arithmetic test, >90 on NVIQ	64% Reading difficulties
GROSS-TUR et al (1996) Israel Dev. Medicine Child Neurol., 38, 25-33	6.4% "dyscalculic"	Two grades below Chronological Age	17% Reading disorder

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

High-functioning adult dyslexics (Simmonds, 1995)

	$\begin{array}{l}\text { Controls } \\ \text { [best] }\end{array}$			$\begin{array}{c}\text { Dyslexics } \\ \text { [best] }\end{array}$	
Mental arithmetic (n=58) correct	53	$[57]$	48^{*}	$[57]$	

Unpublished report, UCL
© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Role of intelligence 1 (Shalev et al, 1997)

TEST	Dyscalculics with reading \& spelling disorders $N=35$	Dyscalculics $\mathrm{Ni=104}$
Full-scale IQ	95.1	99.3^{*}
VIQ	91.2	$96.1^{* *}$
PIQ	100.0	103.2
Similarities	9.6	10.6^{*}
Vocabulary	8.9	9.8^{*}
Object assembly	8.6	$10.0^{* *}$

(C) Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Role of intelligence 2

- Ostad (1998)
- Maths Disabled (MD) children somewhat lower than Maths Normal (MN) on WISC, but that includes Arithmetic and Digit Span subtests
- No difference between MDSpellingD and MDSpellingN
- Lewis et al (1994)

Groups with minimum IQ. No difference on NVIQ between groups with Specific Arithmetic Difficulties, Arithmetic and Reading Difficulties and Specific Reading Difficulties

Differences between maths disabled and maths normal

- Generally, poorer span (though not in all studies)
- Worse on arithmetical facts
- Fewer strategies
- Immature strategies

Why are dyslexics more likely to have maths learning difficulties?

- Problem: Literacy and numeracy two very different neuro-cognitive systems
- Different brain systems
- Literacy parasitic on language. No innate system for specialised for reading and spelling
- Some "biologically basic" (Geary) numerical capacities appear to be innate.
- Infant numerical capacities
- Ancestral non-human capacities?
- Different genetic basis?

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Language and numbers in the brain

(C) Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Reduced grey matter in adoloscents poor on simpelnumber tests

From Isaacs et al, Brain, 2001

© Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Why are dyslexics more likely to have maths learning difficulties?

- Problem: Literacy and numeracy two very different neuro-cognitive systems
- Different brain systems
- Literacy parasitic on language. No innate system for specialised for reading and spelling
- Some "biologically basic" (Geary) numerical capacities appear to be innate.
- Infant numerical capacities
- Ancestral non-human capacities?
- Different genetic basis?
© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Why are dyslexics more likely to have maths learning difficulties?

- Problem: Literacy and numeracy two very different neuro-cognitive systems
- Different brain systems
- Literacy parasitic on language. No innate system for specialised for reading and spelling
- Some "biologically basic" (Geary) numerical capacities appear to be innate.
- Infant numerical capacities
- Ancestral non-human capacities?
- Different genetic basis?

Raven matching numerosities to sample

From Otto Koehler

© Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Chimp training to use numerals

From Boysen
© Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Why are dyslexics more likely to have maths learning difficulties?

- Impaired common function (e.g. short-term memory, long-term memory, verbal memory, language)?
- Problems: neuroanatomy, exceptions,
- Reading difficulties lead to the slowed learning of everything, including mathematics?
- Problem: 60\% of dyslexics are unaffected
- Unexplained cause of comorbidity of two distinct cognitive functions (e.g. genetic anomaly)?
- Problem: maybe two sorts of dyslexic maths difficulty: comorbid and consequential

Why are dyslexics more likely to have maths learning difficulties?

- Problem: Literacy and numeracy two very different neuro-cognitive systems
- Different brain systems
- Literacy parasitic on language. No innate system for specialised for reading and spelling
- Some "biologically basic" (Geary) numerical capacities appear to be innate.
- Infant numerical capacities
- Ancestral non-human capacities?
- Different genetic basis?

Problems with the existing studies

- Many reasons for being bad at maths and the standard tests confound them
- If there is such a thing a specific maths learning disorder - dyscalculia, it needs to be properly characterised.
- If it has a genetic cause (and there is evidence for it being there at birth), then it is likely to affect very basic numerical capacities, and tests should focus on these.

Tests of basic numerical capacities

Capacity	Tests
Numerosity as a property of sets	Enumeration, conservation, matching
Estimated numerosities	Estimation
Sense of ordered numerosities (magnitudes)	Number comparison
Acquiring cultural tools for numbers	Counting

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.
© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Subitizing (1-4)

CANONICAL

RANDOM

Counting (6-9)

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.
© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

7

Stroop conditions

Neutral Congruent Incongruent

Task

Numerical 36
36
36

Physical 333636
(C) Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Dyscalculics may fail on some of these basic tests

- CW
- Degree in psychology; postgraduate qualifications; always very bad at maths at school; finds shopping extraordinarily difficult. Takes 4-5 times as long as normals adding single digits; cannot subtract two digit numbers. Always calculates on his fingers (which makes multiplication hard).
- Compensated dyslexic
- Turner Syndrome (45X,m)
- Very slow simple arithmetic, may fail GCSE
- High-functioning, good language and reading, Alevel maths in some cases

Charles vs controls: dot enumeration

(C) Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Dots: $45, \mathrm{Xm}$ v. control

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Charles vs controls: number comparison

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Number stroop. Charles vs controls

© Brian Butterworth, 2002 \& 2005. All Rights Reserved.

Stroop tasks: 45Xm vs control

© Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

Programme of research

- Tests of basic numerical capacities, reading and spelling, and other cognitive abilities in children to characterise the phenotypes
- Longitudinal studies of how these affect acquisition of cultural tools for mathematics in a realistic (school) setting
- Genetic investigations of basic numerical difficulties
- Anomalous populations
- Family studies
- Imaging brains of dyscalculics and dyslexics
- Cross-language and cross-cultural studies

© Brian Butterworth, $2002 \& 2005$. All Rights Reserved.

